
Ophthalmic statistics note 9:
parametric versus non-parametric
methods for data analysis
Simon S Skene,1 Catey Bunce,2 Nick Freemantle,3 Caroline J Doré,1

On behalf of the Ophthalmic Statistics Group

INTRODUCTION/SCENARIO
Distributions of measured data are often
well modelled by known probability distri-
butions, which provide a useful description
of their underlying properties such as loca-
tion (average), spread (variation) and shape.
Statisticians use probability distributions to
interpret and attribute meaning, draw con-
clusions and answer research questions
using the measurements or data that
researchers gather during their studies.
Different types of data follow different
probability distributions, and these distribu-
tions are characterised by certain features
called parameters. Even the most statistically
averse of researchers is likely to have heard
of the normal distribution, which is often
used to approximate the distribution of con-
tinuous or measurement data such as intrao-
cular pressure, central retinal thickness and
degree of proptosis. The normal distribu-
tion follows a ‘bell-shaped curve’ (although
with a rim stretching to ±infinity) the shape
of which is specified by the mean and SD,
with different values of each, giving rise to
different bell-shaped curves (see figure 1).

Other distributions such as the binomial
and Poisson probability distributions are
less commonly reported in ophthalmic
research and are characterised by different
parameters. The binomial distribution is
used for dichotomous data and is charac-
terised by the probability of success, that is,
the number of ‘successes’ out of a total
number of observed events, for example,
the proportion of graft transplants that fail
within 6 months of transplantation. The
Poisson distribution is used for counts data
and is characterised by the mean number of
events, for example, endophthalmitis rates.

The assumption that the observed data
follow such probability distributions allows
a statistician to apply appropriate statistical

tests, which are known as parametric tests.
The normal distribution is a powerful tool
provided the data plausibly arise from that
distribution or can be made to reasonably
approximate this following a suitable trans-
formation such as by taking natural loga-
rithms to reduce asymmetry. The normal
distribution also serves as an approximating
distribution to the Poisson or binomial dis-
tribution under certain circumstances or can
be used for large samples to approximate
the distribution of the sample mean via the
central limit theorem. Tests based on the
normal distribution are therefore extremely
useful and form the basis of many analyses,
the usual tests being z tests or t tests, which
rely on approximate normality or normality,
respectively.1 If we can assume a normal dis-
tribution, then we expect 95% of values to
lie within 1.96 SDs of the mean.
Parametric tests make assumptions about

the distribution of the data and sometimes it
may be impossible to assess these assump-
tions, perhaps because the sample size is
small or because that data do not follow any
of the more common probability distribu-
tions. Alternatively, we may be interested in
making inferences about medians rather than
means or about ordinal or ranked data. In
such circumstances, statisticians may adopt an
alternative class of statistical tests, which are
known as non-parametric or distribution-free
methods. These methods work by ranking
the data in numerical order and analysing
these ranks rather than the actual measure-
ments observed. Two of the most well-known
non-parametric methods are the Mann–
Whitney test (or U test) and the Wilcoxon
matched-pairs signed-rank test, which are
suitable for data from two unpaired samples
or two paired samples, respectively.2 3

The Wilcoxon matched-pairs signed-rank
test calculates the differences between each
matched pair in the two samples and
replaces their absolute values with their
ordered ranks (1, 2, 3, etc), ignoring zeros.
Under the null hypothesis of no difference
between samples, the sum of the positive
and negative ranks should be similar. The
test statistic is usually taken to be the
smaller of the two sums, and exact p values
can be found using statistical software or by
comparison with statistical tables.

The Mann–Whitney U test effectively
considers all pairs of observations from
two independent samples and calculates
the number of pairs for which an observa-
tion in one sample is preceded by an
observation from the other. Again, the U
statistic can be calculated from the
summed ranks within each sample, found
by ordering the pooled observations.

Such tests depend only on the rank order-
ing of the observed values and not on any
assumptions about their underlying distribu-
tions, so that there are no associated para-
meters to be estimated, and in that sense
such methods are considered non-parametric
or distribution-free. These are easily imple-
mented in standard statistical software
packages such as R, Stata, SAS or SPSS.

Scenario 1
A colleague has conducted an exploratory
randomised controlled clinical trial evaluat-
ing a novel treatment for ocular trauma in
40 patients, 20 of whom received standard
care and 20 of whom received the novel
treatment. The primary outcome measure is
visual acuity in the treated eye 6 months
after surgery, measured using Early
Treatment Diabetic Retinopathy Study
charts at a starting distance of 4 m. In the
analysis of the trial, a decision has to be
made between using parametric and non-
parametric methods, and she asks me for
advice. A histogram of visual acuity is highly
asymmetric, that is, the distribution is
skewed, so that these data appear to violate
the assumption of approximate normality. I
decide therefore to propose the Mann–
Whitney test, and a p value of 0.76 leads to
the conclusion that there is little evidence of
any difference between the medians in the
two groups. My colleague asks me to see an
estimate of the treatment effect. While the t
test would have provided me with an esti-
mate of the mean difference with a CI, no
such result is directly forthcoming from the
Mann–Whitney test, although it is possible
to calculate the difference in medians and a
95% CI for the difference.4 5

DISCUSSION
Non-parametric tests can be useful, but
careful thought should be given on a
case-by-case basis as to whether they are
the most appropriate method of analysis.
Where an assumption of normality is
tenable, parametric tests will be more
powerful, offering greater opportunity to
detect differences where they exist, and
have the advantage that they provide
useful information about the size of treat-
ment effect and CIs directly. The relative
loss of power (the probability of finding
statistically significant results where
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differences exist) when adopting non-
parametric methods, even where these are
appropriate, is well known. It is not
unusual to inflate sample sizes by 10% or
more to accommodate possible non-
parametric analyses resulting in poorer
efficiency (ie, a larger sample size is
required to identify a given difference
between treatment groups).

It is important to note that, in contrast
to what is stated in certain statistical text
books, non-parametric tests are not a
solution to the problem of small sample
sizes.6 7 In fact, for comparative samples
with less than four per group, the Mann–
Whitney test cannot produce a significant
p value (<0.05) whatever the values of
observations in the samples. For small
samples where normality is difficult to
assess, it may be reasonable to assume a
normal distribution, or to use a transform-
ation, based on the distribution of data
from previous larger studies. Non-
parametric methods are themselves not
free of assumptions, for example, the
Mann–Whitney test assumes that samples
arise from the same underlying distribu-
tion and differ only in location.

Scenario 2
My colleague brings me results of her
comparison of the visual acuity data cap-
tured in an exploratory randomised con-
trolled clinical trial. She has used a
non-parametric test to compare visual
acuity 6 months post surgery. She states
that she has used this test because the data
were highly skewed. She shows me histo-
grams of the data from each group, and
looking at this, I realise that she herself
has violated an assumption used by the
non-parametric test. The distributions
differ by central location and in the spread
of the data. Examination of the data in
both groups suggests that patients either

respond greatly or not at all—average
change is misleading in this instance.

SUMMARY
With highly skewed or otherwise awkward
data, the median may be more robust than
the mean as a measure of central tendency
and is used with non-parametric methods
of analysis. However, it should be noted
that this approach separates the p value
from the effect size since the Mann–
Whitney test, for example, tells us only
whether there is a shift in location
between samples and is by design divorced
from the actual estimation of effect. CIs
for the difference in medians should be
presented to give an indication of the size
of the effect. An alternative to non-
parametric methods is given by bootstrap-
ping or resampling,3 but such methods
should not be considered without refer-
ence to a statistician. Where assumptions
of normality are plausible, possibly follow-
ing a transformation, parametric methods
are preferable providing extra power and
allowing adjustment for other factors such
as differences between treatment groups at
baseline in the case of clinical trials.8

LESSON LEARNT
▸ If the data appear to follow a probabi-

lity distribution, use the appropriate
parametric test. This will maximise
power and interpretation.

▸ If data are highly skewed, see whether a
simple transformation will achieve nor-
mality but do not forget to back-
transform when presenting results.

▸ If data appear not to follow any common
distribution and there are no reports of
these data elsewhere to allow you to
assume normality, you should consider a
non-parametric test.

▸ If in doubt, analyse your data both ways
and see whether the conclusions agree.
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Figure 1 Examples of the normal N (m, σ) distributions parameterised by different values of
mean (m) and SD (σ).
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