Eye movement tics

F Shawkat, C M Harris, M Jacobs, D Taylor, E M Brett

Abstract
An 8-year-old girl presented with opsoclonus-like eye movement and an 18 month history of intermittent facial tics. Investigations were all normal. Electro-oculography showed the eye movements to be of variable amplitude (10–40 degrees), with no intersaccadic interval, and with a frequency of 3–4 Hz. Saccades, smooth pursuit, optokinetic, and vestibular reflexes were all normal. These abnormal eye movements eventually disappeared. It is thought that they were a form of ocular tics.

(Tmj Ophthalmol 1992; 76: 697–699)

Tics are quick, involuntary, and repetitive muscular movements that can be transient or persistent, local or widely generalised.1 It is common for children with tics to present to a paediatrician with accompanying symptoms of emotional disturbances. Tics are common in childhood with a prevalence of 13% and an age of onset of 6–12 years.1 By the age of 7 years, approximately 5% of children have a history of such abnormal movement disorders.1 Most often tics originate with facial movements which then may gradually extend to other parts of the body. They may be a continuum from mild, simple, suppressible tics to chronic multiple, and complex ones.45 Most childhood tics resolve spontaneously and, in patients with multifocal tics, the last to resolve are often eye blinking tics.7

The few eye movement tics reported in the literature have been associated with ocular and facial tics and resembled nystagmus.4 Frankel and Cummings8 reported eye rolling tics in a group of patients with Tourette’s syndrome who also had blepharospasm. Bynon and Prendergast9 presented three cases with ocular tics: one had infantile autism and Tourette’s syndrome, another had other types of tics that were complicated by neurological, behavioural, and educational problems. Their third patient had isolated eye movement tics that eventually disappeared. Opsoclonus-like eye movements have not been reported.

Case report
An 8-year-old girl was referred because of episodes of bizarre eye movements. She was born to unrelated parents following a normal pregnancy by forceps delivery. There were no neonatal problems and her development was normal. She was a very bright, intelligent, outgoing child and well above average academically. She was the older of two children. There was a family history of a grandfather who had multifocal tics as a child but this did not include eye movements.

At the age of 6·5 years she developed symmetrical facial tics which became more frequent and florid over the next 4 months. These continued on and off for 12 months, though they did subside substantially. No neurological or physical abnormalities were found. Eighteen months after the initial onset of tics she developed episodes of lid retraction, convergence, and rotatory nystagmus of which she appeared to be unaware. The duration of these episodes was 5–15 seconds and they varied from a couple of episodes a day to repeated attacks lasting for much of the day. Initial investigations of computed tomographic scan of the brain, electroencephalogram, ultrasound of the adrenals, and 24 hour catecholamine excretion were all normal. These tests were performed because the original provisional diagnosis was that of dancing eye syndrome.

On admission to hospital neurological examination was found to be normal, with full external ocular movements. When questioned about her eye movements she said that she ‘sometimes knows it is going to happen’, though she often appeared to be unaware of them. She was also capable of initiating and suppressing these oscillations.

Urinary creatinine and homovanillic acid levels were normal. Magnetic resonance imaging, repeat electroencephalogram, brainstem and visual evoked potentials, and electrotoretinograms were also normal. Electro-oculographic eye movement studies were carried out and a video recording was taken of the opsoclonus. Five weeks after her hospital admission the anomalous eye movements had completely resolved.

EYE MOVEMENT RECORDINGS
Horizontal eye movements were recorded using electro-oculography (EOG) and they were monitored on video. The chaotic saccadic bursts occurred without any intersaccadic intervals, and in the horizontal and vertical planes, thus fulfilling the criteria of ‘opsoclonus’.11

Our patient exhibited bursts of conjugate, rotatory, and pendular oscillations. The ampli-

![Figure 1](http://bjo.bmj.com/)

Figure 1 Horizontal electro-oculogram depicting the opsoclonus. Two typical examples of the spontaneous eye oscillations.
tude of the horizontal components was rather variable and ranged from 10 to 40 degrees with a frequency of 3–4 Hz (Fig 1). These eye movements were often observed in association with eyebrow raising, facial grimacing, and, on some occasions, with arm and leg extensions and slight arching of the back.

Saccades were normal. Smooth pursuit gain was 1.0 at 20 deg/s. Full field, binocular optokinetic nystagmus gain was 0.9 at 25 deg/s. Vestibular nystagmus in the dark had a peak gain of 0–9, with a chair acceleration of 18 deg/s/s up to 80 deg/s. The vestibular time constant was estimated to be 15 seconds. These results are all within the normal limits for our laboratory. However, short episodes of opsinclonus were evident throughout the testing session and the oscillations were superimposed upon the normal eye movements.

Discussion

Opsoclonus is a rare but striking disorder of ocular motility. It is characterised by involuntary, chaotic bursts of multidirectional, high amplitude, high frequency saccades, without an intersaccadic interval.11 The absence of intersaccadic intervals distinguishes opsinclonus from macrosaccadic oscillations.12

In children opsinclonus usually occurs in one of three settings: transient neonatal opsinclonus,13 parainfectious or encephalopathic opsinclonus, and the syndrome of opsinclonus and myoclonus,14 which can be neuroblastoma related. This has also been known as ‘dancing eye syndrome’, ‘myoclonic encephalopathy’, and ‘infantile myoclonoclonia’;15 and is characterised by an acute or subacute onset of polymyoclonia, cerebellar ataxia, and opsinclonus.

Precise localisation of the lesion causing opsinclonus remains uncertain,16 17 and studies have shown mild to severe loss of cerebellar Purkinje cells.18 19 It is likely that with the complex neuronal network involved in the generation of saccades, there may be more than one anatomical site involved in the pathogenesis of opsinclonus.20

In our patient a diagnosis of ‘dancing eye syndrome’ was rejected owing to the lack of other clinical symptoms and to the characteristics of the oscillations. They were of lower frequency (3–4 Hz) than in opsinclonus recorded from patients with brainstem and cerebellar pathology, including children with ‘dancing eye syndrome’, which are in the order of 10 Hz.21 Studies11 12 have reported a wide frequency range for opsinclonus (from 5 to 13 Hz) yet our patient’s saccadic frequency remains outside this range. Another unusual feature of the opsinclonus in our case was the large variability in the amplitude of the oscillations.

Simultaneous video and EOG recording enabled careful and continuous monitoring of the patient’s behaviour. Our patient did have some accompanying facial motor behaviour, the most common being eyebrow raising, retraction, and twitching of the eyelids during the bout of opsinclonus and facial grimacing just prior to its onset. Opsinclonus has been reported together with eyelid movement and twitching,22 blinking,23 and lid retraction.24 However these signs usually present together with other manifestations such as ataxia, myoclonus, and tremor. Thus, the possibility of ocular tics was entertained.

Tics possess three features that can help differentiate them from other movement disorders: (1) they are often preceded by a sensation and an irresistible urge to move; (2) they can be willfully suppressed; and (3) they persist in all stages of sleep.25 We did not record our patient’s eye movements during sleep but they were consistent with the first two features.

It has been thought that tics are manifestations of underlying psychological conflict. Our patient’s ocular tics could be considered as a form of ‘conversion disorder’. This is defined as a disturbance of physical functioning that cannot be explained by pathophysiological mechanisms but is due to psychological conflict or need.26 Studies suggest that conversion symptoms usually develop in children with pre-existing vulnerabilities: they tend to have academic problems, be conscientious, perfectionistic, and egocentric.27 Our patient was noted to be very intelligent, hyperactive, and outgoing though IQ was not formally assessed. Studies also suggest that those with tics have above average intelligence,28 29 but they perform better only on tests involving psychomotor speed and reaction times; this has been interpreted to represent an exaggerated motor response to stress.

The association of stress and anxiety with tics has been well documented.30 31 Through discussions with the patient’s parents it became apparent that they had high expectations of their daughter and it was revealed that the onset of her symptoms occurred soon after the birth of the second child. This could well have been the ‘stressor’ to initiate and exacerbate her symptoms, to which she may have already had a predisposition.

The possibility was raised that the eye movements may be voluntary. Voluntary nystagmus and flutter occur in normal subjects and can also be learnt.32 They are usually associated with a convergence effort, but this was not observed in our case.

Though the abnormal eye movements have disappeared it is important to follow up this patient in case of any further symptoms. We believe this is a form of ocular tics. Follow-up studies1 have shown that two thirds of patients recover completely, with the best prognosis being for children whose onset of tics was between 6 and 8 years of age.

We thank the Wooden Spoon Society, the Iris Fund, Help a Child to See and the Leathersellers Charitable Trust for their support.

Eye movement tics

Eye movement tics.

F Shawkat, C M Harris, M Jacobs, D Taylor and E M Brett

doi: 10.1136/bjo.76.11.697

Updated information and services can be found at:
http://bjo.bmj.com/content/76/11/697

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/