rss
Br J Ophthalmol 90:1183-1187 doi:10.1136/bjo.2005.089110
  • Laboratory science - Extended reports

Subretinal electrode implantation in the P23H rat for chronic stimulations

  1. J Salzmann1,
  2. O P Linderholm2,
  3. J-L Guyomard3,4,
  4. M Paques3,4,5,
  5. M Simonutti3,4,
  6. M Lecchi6,
  7. J Sommerhalder1,
  8. E Dubus3,4,
  9. M Pelizzone7,
  10. D Bertrand6,
  11. J Sahel3,4,5,
  12. P Renaud2,
  13. A B Safran1,
  14. S Picaud3,4,5
  1. 1Service d’Ophtalmologie, Hôpitaux Universitaires de Genève,1205 Geneva, Switzerland
  2. 2Microsystems Unit, Ecole Polytechnique Fédérale, Lausanne, Switzerland
  3. 3INSERM U-592, Laboratoire de Physiopathologie Cellulaire et Moléculaire de la Rétine, Paris, France
  4. 4Université Pierre et Marie Curie Paris-6, Paris, France
  5. 5Fondation Ophtalmologique A de Rothschild, Paris, France
  6. 6Département de Neurosciences, Centre Médico-Universitaire, Geneva, Switzerland
  7. 7Centre Romand d’Implants Cochléaires, Hôpitaux Universitaires de Genève, Geneva, Switzerland
  1. Correspondence to: Dr Serge Picaud Laboratoire de Physiopathologie Cellulaire et Moléculaire de la Rétine, INSERM U-592, Bâtiment Kourilsky, 184 rue du Faubourg St Antoine, 75571 Paris Cedex 12, France; picaud{at}st-antoine.inserm.fr
  • Accepted 4 May 2006
  • Published Online First 5 June 2006

Abstract

Background: In age related macular degeneration and inherited dystrophies, preservation of retinal ganglion cells has been demonstrated. This finding has led to the development of various models of subretinal or epiretinal implant in order to restore vision. This study addresses the development of a polyimide subretinal electrode platform in the dystrophic P23H rat in vivo.

Methods: A technique was developed for implanting a subretinal electrode into the subretinal space and stabilising the distal extremity of the cabling on the rat cranium in order to allow future electrical stimulations of the retina.

Results: In vivo imaging of the retina with the scanning laser ophthalmoscope demonstrated reabsorption of the surgically induced retinal detachment and the absence of major tissue reactions. These in vivo observations were confirmed by retinal histology. The extraocular fixation system on the rat cranium was effective in stabilising the distal connector for in vivo stimulation.

Conclusion: This study demonstrates that a retinal implant can be introduced into the subretinal space of a dystrophic rat with a stable external connection for repeatable electrical measurements and stimulation. This in vivo model should therefore allow us to evaluate the safety and efficacy of electrical stimulations on dystrophic retina.

Footnotes

  • Funding: This work was supported by Swiss National Fund for Scientific Research (grants 3100–61956.00 and 3152–063915.00), Fondation en Faveur des Aveugles (Geneva), Fédération des aveugles et Handicapés Visuels de France, Fondation des Gueules Cassées, IRRP, Caisse d’Assurance Maladie des Professions Libérales, INSERM, University Pierre and Marie Curie (Paris VI), Assistance Publique-Hôpitaux de Paris (AP-HP), Fondation Ophtalmologique A de Rothschild.

  • Competing interests: none declared.

Register for free content


Free sample
This recent issue is free to all users to allow everyone the opportunity to see the full scope and typical content of BJO.
View free sample issue >>

Don't forget to sign up for content alerts so you keep up to date with all the articles as they are published.

Navigate This Article