COMMUNICATIONS

A NOTE ON THE INORGANIC CONSTITUENTS OF NORMAL AND CATARACTOUS HUMAN CRYSSTALLINE LENSES

BY

GEORGE MACKAY, M.D., F.R.C.S.E.
CONSULTING OPHTHALMIC SURGEON TO THE ROYAL INFIRMARY, EDINBURGH

CORBET PAGE STEWART, M.SC., PH.D.
SENIOR BIOCHEMIST TO THE ROYAL INFIRMARY, EDINBURGH

AND

JEAN DICK ROBERTSON, B.SC.
HENDERSON TRUST RESEARCH SCHOLAR, FROM THE CLINICAL LABORATORY, ROYAL INFIRMARY, EDINBURGH

Efforts to devise some method of preventing the development of cataract in human lenses have long been pursued. Various recommendations have been made and practised, notably the application to the conjunctival surface of solutions or ointments containing soda, potash or calcium, iodine, dionine, etc., in different proportions and combinations. Electrical currents, optical contrivances, and internal medication have all had their advocates and practitioners. Faith healing has not been omitted. Quackery has flourished by such means, and unjustifiable pretensions and promises have emptied the purses of many timid and gullible patients hoping to escape from the prospect of extraction by surgical operation.

That the problem must be worked out on scientific lines is self-evident, and efforts in that direction have not been neglected, but so
far, with no very conclusive results. More precise knowledge of
the conditions in which the lens is liable to lose its transparency,
and the actual changes in its structure and chemical constitution
are essential as a base from which to approach this problem. The
investigation calls for the fullest possible knowledge of the nutrition
of the normal lens, and of the possibility of modifying it by chemical
or other treatment. One must enquire to what extent substances
can be conveyed into the interior of the lens by absorption from the
conjunctival sac, the aqueous or vitreous, or through the general
circulation. Alternatively, is it possible beneficially to extract
undesirable elements through the unbroken capsule of the
living lens?

As a first step, it appeared to us desirable that a fresh series of
observations should be made into the chemical condition of
cataractous, as compared with transparent, human lenses, and that
advantage should be taken of the most up-to-date methods of
analysis. Very desirable also to employ for this purpose were lenses
which had been extracted with intact capsules. The post-mortem
room has supplied the transparent lenses; the hospital operating
theatre the nontransparent group, kindly provided by colleagues who
practise the intracapsular method of extraction.

Thus far, no attempt has been made by the writers of this paper
to correlate the transparent lenses with the morbid condition of the
cadaver from which the lens was taken.

Nor have the cataractous lenses obtained from living subjects
been sufficiently numerous to classify them into special groups or
varieties of cataract—only the sex and age of each patient have been
noted, except in one group which was definitely known to have a
traumatic origin.

The quantity of ash yielded by each lens is so small that the
analysis has been carried out on groups of four lenses fortuitously
placed together. It is hoped that larger supplies of lenses may
make it possible and profitable to classify the lenses clinically. This,
of course, can only be done through the co-operation of ophthalmic
colleagues who are willing to take this extra trouble at the time of
extraction and forward the clinical titles or comments along with
the lenses when submitted for analysis. An appeal for such helpful
team work is hereby made by the writers.

The present paper does not pretend to be more than a preliminary
note intimating that this research is being conducted, and is launched
in the hope of stimulating interest, support and encouragement.

Burge (1909) observed that human cataractous lenses contained
much more calcium and much less potassium than did normal lenses,
and this observation has been confirmed by Adams (1929). Burdon-
Cooper and Lewis (1929) have obtained similar results, having
shown by spectrographic analysis that the K/Ca ratio in the lens falls
HUMAN CRYSTALLINE LENSES

with the development of cataract. The opacity of the cataractous lens has been ascribed to these changes in inorganic constituents, and especially to the increase in calcium. Thus, although Adams (1929) was unable to prove conclusively that increase in calcium content is the primary cause of the production of opacity; she found abnormal deposition of calcium in cataractous lenses, and her evidence was suggestive in other respects as well. The diminished potassium content of the cataractous lens has been made the basis of a method of treatment which has met with rather doubtful success, very similar results being obtained when sodium salts were applied instead of potassium salts. (Inglis Pollock, 1917-1923).

There are, however, other changes in the composition of the crystalline lens which has become cataractous, and although these may possibly be secondary to changes in the inorganic constituents, they indicate that alterations in the calcium and potassium are accompanied by changes in the concentration of other inorganic ions which may be equally important. Thus Lavagna (1926) has found cataractous lenses to have a lower pH than normal ones (i.e., to be slightly less alkaline) a condition which would actually militate against the deposition of calcium phosphate, and to have a greater water content, as well as marked variations in the concentration of the organic constituents.

As a preliminary to further studies, we have for some time been engaged in the analysis of human lenses, normal and cataractous.

Experimental Methods and Results.—The cataractous lenses used in these analyses were removed with capsule, and placed at once in chemically clean, sterile, stoppered glass bottles, but not immersed in fluid other than the slight amount which might have adhered to them at the moment of extraction. It was not always possible to carry out the analysis at once—a number of the lenses were sent to us by post—so that it was impracticable to use the wet weight as a standard of comparison. In these circumstances we were compelled to use the dry weight* and the weight of ash. Neither of these, perhaps, is ideal, since Lavagna (1926) and others have found differences in the water content of normal and cataractous lenses. Burge (1909) too, reports a difference between the dry weight of the normal lens and that of the cataractous, but his figures are not particularly convincing, since one series of cataractous lenses (from the U.S.A.) had a smaller mean dry weight than his normal controls, while the other (from India) had a larger. Adams (1929), however, gives the average dry weight of 24 normal lenses as 53·0mg., and that of 31 cataractous lenses as 44.5mg.—probably an important difference though she states that she herself does not regard it as significant. Our own figures (Table I) show a definite diminution

* i.e., the weight after drying at 105°C. until no further loss occurred.
in the dry weight of the cataractous lens. We find, in addition, that there is a tendency for the cataractous lens to contain rather less ash than the normal, but the two series overlap so completely that in spite of the difference in the mean values the figures cannot be regarded as more than suggestive. Although, on the average, a cataractous lens contains a slightly smaller weight of ash than the normal, transparent lens, the total weight of the cataractous lens is also smaller. So marked, indeed, is the diminution in size of the cataractous lens as a whole, that the percentage of ash in such a lens is actually greater than normal, whether the ash is expressed as percentage of dry weight or of wet weight (the latter being calculated from Adams' figures for the water content).

TABLE I.

<table>
<thead>
<tr>
<th>Number of Lenses</th>
<th>Dry Weight in Mgs.</th>
<th>Weight of Ash Mgs.</th>
<th>Ash as percentage of *</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Range Average</td>
<td>Range Average</td>
<td>Dry Weight Wet Weight</td>
</tr>
<tr>
<td>Normal - 18</td>
<td>53'7 to 67'5 60'14</td>
<td>1'10 to 1'59 2'22</td>
<td>2'64 1'04</td>
</tr>
<tr>
<td>Cataractous 27</td>
<td>30'0 to 50'6 44'07</td>
<td>1'10 to 1'41 2'40</td>
<td>3'20 1'44</td>
</tr>
</tbody>
</table>

*From Adams' (1929) figures:—
\[
\frac{{Average \text{ Wet Weight}}}{Average \text{ Dry Weight}} = 2'54 \text{ for normal; } 2'21 \text{ for cataractous lenses.}
\]

For analysis, the ash of four lenses (obtained by careful incineration in a platinum crucible at a temperature not exceeding 350°C.) was dissolved in a little dilute nitric acid, and the volume of solution was made up to 20 c.c. with distilled water. Aliquot portions of this solution were used for the various determinations. Potassium and calcium were determined by the methods of Kramer and Tisdall (1921*); sodium by the method of Kramer and Gittleman (1924); total sulphur by barium sulphate precipitation; total sulphate (on a separate series of single lenses) by the method of Denis and Leche (1925); phosphate by the method of Briggs (1924); and chloride by back titration with ammonium thiocyanate after addition of excess of silver nitrate.

The sulphate present in the ash includes part of the organic sulphur of the lens, as is shown by the fact that the method for

*Used also by Adams.
<table>
<thead>
<tr>
<th>Number and description of lenses</th>
<th>Dry Wt. Mg.</th>
<th>Ash Wt. Mg.</th>
<th>Calcium</th>
<th>Potassium</th>
<th>Sodium</th>
<th>Chlorine</th>
<th>Sulphur as SO₄</th>
<th>Phosphorus as PO₄</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% Dry Wt.</td>
<td>% Ash</td>
</tr>
<tr>
<td>Normal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4, male</td>
<td>215.5</td>
<td>5.8</td>
<td>0.026</td>
<td>0.98</td>
<td>0.705</td>
<td>26.2</td>
<td>0.412</td>
<td>15.3</td>
</tr>
<tr>
<td>4, male</td>
<td>243.0</td>
<td>6.8</td>
<td>0.034</td>
<td>1.23</td>
<td>0.696</td>
<td>24.9</td>
<td>0.316</td>
<td>12.3</td>
</tr>
<tr>
<td>4, male</td>
<td>270.1</td>
<td>7.0</td>
<td>0.031</td>
<td>1.19</td>
<td>0.487</td>
<td>18.8</td>
<td>0.189</td>
<td>7.3</td>
</tr>
<tr>
<td>4, male</td>
<td>235.6</td>
<td>8.4</td>
<td>0.024</td>
<td>0.64</td>
<td>0.654</td>
<td>17.3</td>
<td>0.062</td>
<td>16.5</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td></td>
<td>0.029</td>
<td>1.01</td>
<td>0.635</td>
<td>21.8</td>
<td>0.385</td>
<td>12.6</td>
</tr>
<tr>
<td>Senile Cataract</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4, female</td>
<td>144.3</td>
<td>5.5</td>
<td>0.210</td>
<td>5.1</td>
<td>0.114</td>
<td>3.0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4, female</td>
<td>197.8</td>
<td>4.5</td>
<td>0.118</td>
<td>5.25</td>
<td>0.025</td>
<td>1.1</td>
<td>0.622</td>
<td>27.3</td>
</tr>
<tr>
<td>4, male</td>
<td>199.3</td>
<td>7.6</td>
<td>0.159</td>
<td>4.18</td>
<td>0.107</td>
<td>2.8</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4, male</td>
<td>116.8</td>
<td>5.3</td>
<td>0.318</td>
<td>7.01</td>
<td>0.122</td>
<td>2.7</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td></td>
<td>0.201</td>
<td>5.49</td>
<td>0.092</td>
<td>2.4</td>
<td>0.622</td>
<td>27.3</td>
</tr>
<tr>
<td>Senile Cataract</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4, male</td>
<td>202.5</td>
<td>7.4</td>
<td>0.084</td>
<td>2.31</td>
<td>0.309</td>
<td>8.45</td>
<td>0.603</td>
<td>16.5</td>
</tr>
<tr>
<td>Traumatic Cataract</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1, male</td>
<td></td>
<td></td>
<td>2.4</td>
<td>1.32</td>
<td>4.4</td>
<td>1.4</td>
<td>3.1</td>
<td>3.0</td>
</tr>
</tbody>
</table>
inorganic sulphate gives results definitely lower than those obtained by use of the method for total sulphate. Most probably, part of the phosphate is similarly combined organically in the lens as phosphoprotein or phospholipin, and though we have no direct evidence on this point, it is noteworthy that Lavagna (1926) found fully cataractous lenses to contain less phospholipin than normal ones—just as, in our series, is the case with total phosphate. Indeed, if Lavagna’s figures be accepted, phospholipin appears to account for about three quarters of the total phosphate found in the lens.

The ash appears to contain practically no carbonate, a fact which is apparently to be explained by the replacement, during the process of ashing, of the carbonate (or bicarbonate) actually present in the lens, by phosphate or sulphate from organic compounds, the carbon dioxide, of course, being driven off. The ions actually estimated account for practically the whole of the ash, and indeed, in one or two cases they total to rather more than 100 per cent.—a result which is not altogether surprising in view of the difficulty of determining accurately such small amounts. It may be concluded, however, that other inorganic substances can only be present in relatively small amounts.

The results of analysis are summarized in Tables II and III.

TABLE III.

<table>
<thead>
<tr>
<th>Sulphate content of lens.</th>
<th>SO₄ as % of dry weight.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td></td>
</tr>
<tr>
<td>Do.</td>
<td></td>
</tr>
<tr>
<td>Do.</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>0.535</td>
</tr>
<tr>
<td>Cataractous</td>
<td></td>
</tr>
<tr>
<td>Do.</td>
<td></td>
</tr>
<tr>
<td>Do.</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>0.633</td>
</tr>
</tbody>
</table>

Discussion.—Although it is somewhat unsafe to go very far in interpreting these results—in particular, further information is needed as to the forms in which the sulphate and phosphate of the lens exist, as well as on the presence of bicarbonate—two definite indications seem to emerge.
It is to be noted that the various inorganic constituents of the healthy lens are present in concentrations markedly different from those of the same substances in blood plasma, or—which is probably more important—in normal aqueous humour. The latter closely resembles cerebro-spinal fluid in composition, and thus does not differ very markedly from blood plasma. It contains rather more sodium than does plasma, about 5/4 as much chlorine, slightly less potassium, and about half as much calcium. Hence, to confine our attention to these substances, ignoring the phosphate and sulphate, of whose concentration in the lens we know little, we can contrast healthy lenses and normal plasma or aqueous humour as follows:—

Normal Lens.—

Potassium greatly in excess of sodium.
Calcium very low (about 10mg. per cent., calculated on wet weight).
Chlorine less than equivalent to sodium.

Aqueous Humour.—

Sodium greatly in excess of potassium.
Calcium about 5mg. per cent.
Chlorine about equivalent to sodium.

The lens is thus strongly differentiated from the aqueous humour and from blood plasma. (The vitreous humour has been ignored, since, apart from the improbability of its being concerned in the nutrition of the lens, little is known of its inorganic constituents. Its calcium content, however, is intermediate between that of the lens and that of the aqueous humour, i.e., about 7·3mg. per cent., and its chlorine content is slightly below that of the humour (O'Brien and Salit, 1929). In the cataractous lens, however, this power of maintaining its differentiation, at any rate from plasma, has been partly lost. Whether this also applies to the differentiation from aqueous humour must be a subject of future investigation. In the cataractous lens, sodium predominates over potassium, but the latter remains higher than in blood plasma, and the chloride is increased though it remains lower than in plasma. These changes are shown graphically in Fig. 1. There is thus a tendency on the part of the lens to return to, or take on, a composition similar to that of blood plasma, and this tendency is shown in immature as well as mature cataracts. It appears, indeed, to be progressive, and, therefore, to be closely connected with the diseased process.

A notable exception to this, however, is the calcium, which, instead of increasing slightly as would be expected in a general
Comparison of some inorganic constituents of normal lenses, with those of cataractous lenses, and of serum. The figures for the lenses are calculated on the wet weight, using Adams' estimations of water content.
HUMAN CRYSSTALLINE LENSES

return to a plasma-like composition, is greatly increased in cataractous lenses, both absolutely, and relatively to the other ions. This argues some specific relationship of calcium to the development of cataract. Adams (1929), confirming the earlier work of Wessely (1922) and Kranz (1927), finds actual deposits of calcium (possibly as phosphate) in the cataractous lens, and relates the erratic occurrence of these deposits with the wide variability in calcium content of individual lenses. Wessely and Kranz considered that the calcium deposition was secondary to a protein degeneration and Adams states that it cannot as yet be proved conclusively that the increase in calcium is a primary factor in the production of opacity in the lens. With this conclusion we must still rest content. The immature cataractous lenses show an increase in calcium content, which, however, is less than that in mature cataract, but they also show the other divergences from the normal, again to an intermediate extent. There is thus no evidence that calcium is the first constituent to alter, as one might expect if it were the primary factor. Yet undoubtedly the difference between the behaviour of calcium and that of the other inorganic ions during the development of cataract points to some special connection of the former with the production of opacity.

Our thanks are due to Drs. Sinclair and Traquair, Ophthalmic Surgeons of this hospital, to Dr. James Davidson, Pathologist, and to Drs. Inglis Pollock, and Wright Thomson, of Glasgow, all of whom supplied us with materials for analysis. The expenses of the work were partly defrayed by a grant from the Moray Fund of this University which, together with a part-time grant to one of us (C.P.S.) from the Medical Research Council, is hereby gratefully acknowledged.

REFERENCES

A NOTE ON THE INORGANIC CONSTITUENTS OF NORMAL AND CATARACTOUS HUMAN CRystALLINE LENSES

George Mackay, Corbet Page Stewart and Jean Dick Robertson

Br J Ophthalmol 1932 16: 193-201
doi: 10.1136/bjo.16.4.193

Updated information and services can be found at:
http://bjo.bmj.com/content/16/4/193.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/