IMPAIRED SCOTOPIC VISION IN ADIPOSO-GENITAL DYSTROPHY*

BY

J. LANDAU AND Y. M. BROMBERG

From the Departments of Ophthalmology and of Obstetrics and Gynaecology of the Rothschild-Hadassah-University Hospital and Hebrew University-Hadassah Medical School Jerusalem, Israel

IMPAIRMENT of dark adaptation was found frequently to occur in various endocrine disturbances of the genital function, and has been reported by us previously (Landau and Bromberg, 1950; Landau and Polishuk, 1948; Landau, Eckerling, and Polishuk, 1951; Landau and Bromberg, 1954). Disturbed scotopic vision was observed in the majority of patients suffering from pituitary or ovarian amenorrhea, in disorders of menopause and in oligospermia of central origin. Patients with tumours of the pituitary and diencephalic regions with endocrine dysfunction had distinctly disturbed dark adaptation. It was therefore suggested that the hypothalamus, which regulates various metabolic and gonadotrophic functions, might conceivably play a role in the mechanism of scotopic vision.

This assumption led us to study scotopic vision in adiposogenital dystrophy, a condition due to functional or organic disorders of the hypothalamus.

Material and Methods

Nineteen patients, thirteen females and six males, aged from 7–27, all suffering from adiposogenital dystrophy, were examined for dark adaptation. As it is difficult to differentiate between adiposogenital dystrophy and primary gonadal failure or obesity with delayed sexual maturation, only those patients were considered by us as adiposogenital dystrophy cases in whom the following clinical manifestations and laboratory findings were present:

1. Adiposity involving particularly chin, neck, hips, and upper part of thighs;
2. Poorly developed penis and testes in males, and atrophic uterus and vaginal mucosa with prolonged amenorrhea in females;
3. Absence or under-development of secondary sex characteristics;
4. Reduction of follicle-stimulating hormone in the urine.

In some patients, other hypothalamic disorders were found, as, for instance, diabetes insipidus, disorders of water metabolism, and insulin-resistant diabetes. In one patient of this series, bitemporal hemianopsia pointed to the diagnosis of a tumour in the mid-brain, which was confirmed at operation. Disturbances of diencephalic nature were found by electro-encephalography in many patients.

Six individuals, four females and two males, aged from 10 to 20, suffering from obesity without genital or other endocrine disorders, were also examined for dark adaptation. In all these cases the distribution of body fat was not characteristic of adiposogenital dystrophy.

Dark-adaptation tests were performed with Koch's adaptometer (Koch, 1945), a modification of Hecht's adaptometer, after a bleaching period of 5 minutes. In no case were pathological conditions of the eyes likely to impair dark adaptation. All the tests were carried out by the same examiner and under identical conditions.

Results

The final average rod threshold values found in healthy control subjects and reported in a previous study (Landau and Bromberg, 1950) were log. 3 μμ Lamb. with a normal range between log. 2.5 μμ Lamb. and 3.6 μμ Lamb. The final rod threshold values for dark adaptation found in patients suffering from adiposogenital dystrophy are summarized in the Table (overleaf).

*Received for publication October 25, 1954.
TABLE

FINAL ROD THRESHOLD IN ADIPOSO-GENITAL DYSTROPHY

<table>
<thead>
<tr>
<th>Case No.</th>
<th>Sex</th>
<th>Age</th>
<th>Clinical Findings</th>
<th>Abnormal Laboratory Findings</th>
<th>Log (\mu) Lamb.</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>19</td>
<td>Pronounced obesity Amenorrhea Atrophic uterus Diabetes Oedema Bitemporal hemianopia</td>
<td>Low F.S.H. values Hyperglycaemia E.E.G.: disturbance of diencephalic nature Atrophic vaginal smear</td>
<td>6:4</td>
<td>Tumour of diencephalic region, confirmed at operation</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>17</td>
<td>Marked obesity Primary amenorrhea Stunted growth Scanty pubic and axillary hair Atrophic uterus</td>
<td>Low F.S.H. value Atrophic vaginal smear Atrophic endometrium</td>
<td>4:7</td>
<td>Treated by low dosage roentgen irradiation of pituitary and ovaries; no effect</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>15</td>
<td>Marked obesity Stunted growth Primary amenorrhea Under-developed secondary sex characteristics</td>
<td>Low F.S.H. values Atrophic vaginal smear Hypoglycaemia</td>
<td>4:6</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>16</td>
<td>Obesity Primary amenorrhea Under-developed genitalia and secondary sex characteristics</td>
<td>Low F.S.H. values Atrophic vaginal smear Small sella turcica</td>
<td>4:6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>20</td>
<td>Pronounced obesity Primary amenorrhea No pubic and axillary hair Polyuria Diabetes latens</td>
<td>Low F.S.H. values Atrophic endometrium Atrophic vaginal smear Decreased sugar tolerance Small sella turcica</td>
<td>5:2</td>
<td>Parents were first cousins</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>22</td>
<td>Marked obesity Amenorrhea 4 years Atrophic genitalia Primary sterility Headaches</td>
<td>Low F.S.H. values Atrophic uterine and vaginal mucosa E.E.G.: disturbance of diencephalic nature</td>
<td>6:3</td>
<td>Treated by oestrogens; withdrawal bleeding; no effect on dark adaptation</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>25</td>
<td>Obesity Amenorrhea 6 years Atrophic uterus Mental deficiency Primary sterility</td>
<td>Low F.S.H. values Atrophic uterine and vaginal mucosa B.M.R. 12 per cent. 17 ketosteroids 3 mg./24 hrs</td>
<td>6:6</td>
<td>Subjected to insulin shock therapy</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>22</td>
<td>Marked obesity Amenorrhea 3 years Stunted growth Headaches Primary sterility</td>
<td>Low F.S.H. values Atrophic uterine and vaginal mucosa Increased sugar tolerance B.M.R. 9 per cent. Small sella turcica</td>
<td>7:2</td>
<td>Oestrogen and thyroid therapy; no effect on dark adaptation</td>
</tr>
</tbody>
</table>
SCOTOPIC VISION IN ADIPOSO-GENITAL DYSTROPHY

TABLE—cont.

<table>
<thead>
<tr>
<th>Case No.</th>
<th>Sex</th>
<th>Age</th>
<th>Clinical Findings</th>
<th>Abnormal Laboratory Findings</th>
<th>Log. 14U Lamb.</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>F</td>
<td>22</td>
<td>Obesity, Amenorrhea, 4 years, Headaches, Polyuria</td>
<td>Low F.S.H. values, 17 ketosteroid 5 mg./24 hrs, B.M.R. 6 per cent., Atrophic endometrium</td>
<td>4.6</td>
<td>Treated by mare serum and chorionic gonadotropins; no effect</td>
</tr>
<tr>
<td>10</td>
<td>F</td>
<td>14</td>
<td>Very marked obesity, No secondary sex characteristics</td>
<td>Low F.S.H. values, Small sella turcica</td>
<td>6.9</td>
<td>Parents related; mother suffering from diabetes, Mental retardation</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>22</td>
<td>Obesity, Amenorrhea, 4 years, Atrophic uterus, Primary sterility</td>
<td>Low F.S.H. values, Atrophic uterine and vaginal mucosa, Glucosuria</td>
<td>4.6</td>
<td>Treated by oestrogens and progestosterone; no effect, Mental retardation</td>
</tr>
<tr>
<td>12</td>
<td>F</td>
<td>23</td>
<td>Obesity, Amenorrhea, 3 years, Headaches, Primary sterility</td>
<td>Low F.S.H. values, B.M.R. 17 per cent., E.C.G.: suggesting diencephalic disturbance, Hyperglycaemia, Atrophic endometrium</td>
<td>4.7</td>
<td>Treated by oestrogens and progestosterone; no effect</td>
</tr>
<tr>
<td>13</td>
<td>F</td>
<td>27</td>
<td>Obesity, Amenorrhea, 9 years, Atrophic genitalia, Primary sterility, Diabetes</td>
<td>Low F.S.H. values, Hyperglycaemia, Atrophic endometrium, E.E.G.: suggesting diencephalic disturbances</td>
<td>5.8</td>
<td>Treated by low dosage roentgen irradiation; no effect</td>
</tr>
<tr>
<td>14</td>
<td>M</td>
<td>14</td>
<td>Obesity, Very small penis, Bilateral cryptorchismus</td>
<td>Low F.S.H. values, 17 ketosteroid 3 mg./24 hrs</td>
<td>5.7</td>
<td>Parents related, Treated by chorionic gonadotropin; no effect</td>
</tr>
<tr>
<td>15</td>
<td>M</td>
<td>13j</td>
<td>Obesity, Stunted growth, Small penis and testes, No axillary and pubic hair</td>
<td>Low F.S.H. values, B.M.R. 16 per cent., Small sella turcica</td>
<td>5.6</td>
<td>Suffered from encephalitis 8 years previously, Mental retardation</td>
</tr>
<tr>
<td>16</td>
<td>M</td>
<td>8j</td>
<td>Obesity, Small penis, Bilateral cryptorchismus</td>
<td>Small sella turcica, Decreased sugar tolerance</td>
<td>6.6</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>M</td>
<td>6j</td>
<td>Obesity, Small penis and testes</td>
<td>Small sella turcica</td>
<td>5.5</td>
<td>Brother of Case 16</td>
</tr>
<tr>
<td>18</td>
<td>M</td>
<td>12</td>
<td>Obesity, Stunted growth, Small penis, Bilateral cryptorchismus, No pubic and axillary hair</td>
<td>Low F.S.H. values, B.M.R. 24 per cent.</td>
<td>5.7</td>
<td>Encephalitis 6 years previously, Epilepsy</td>
</tr>
<tr>
<td>19</td>
<td>M</td>
<td>14</td>
<td>Obesity, Stunted growth, Small penis and testes, Scanty pubic and axillary hair</td>
<td>Low F.S.H. values, 17 ketosteroids 2 mg./24 hrs, E.E.G.: suggesting diencephalic disturbances</td>
<td>4.6</td>
<td></td>
</tr>
</tbody>
</table>
The Table shows clearly that all those patients examined who were suffering from adiposo-genital dystrophy had disturbed scotopic vision. The final rod threshold values varied from log. 4.6μV. Lamb. to log. 7.2μμ V. Lamb. (mean log. 5.57μμ V. Lamb.). The six cases of obesity without evident endocrine disorders showed normal rod threshold values.

Discussion

Impairment of dark adaptation, found by us to occur in various endocrine disorders of the genital function, seems not to be related to any of the generally known and accepted factors of disturbed scotopic vision, as reviewed by Duke-Elder (1942).

As those conditions were related to interference with hypothalamic, pituitary, and ovarian functions, it seemed probable that impaired dark adaptation observed in these disorders may also be connected with the same regulating mechanism. The failure to improve impairment of dark adaptation by substitutive gonadal hormone therapy (oestrogen, progesterone, testosterone) led us to assume that disturbed scotopic vision is related rather to a dysfunction of higher centres in the pituitary or hypothalamus, regulating the hormonal activity of the gonads.

In gonadal failure secondary to pituitary deficiency in both women and men, the scotopic vision was very frequently, but not constantly, disturbed. On the other hand, a constant and distinct impairment of dark adaptation was found in all cases of adiposo-genital dystrophy.

There is a consensus of opinion that this disease is induced by organic or functional disorders of the hypothalamus (Taubenhaus and Oberhill, 1950; Soffer, 1951). The role of the hypothalamus in the regulation of fat metabolism in animals has been experimentally demonstrated by Crowe, Cushing, and Homans (1910), and by Camus and Roussy (1913). Hetherington and Ranson (1939, 1942) confirmed these findings by exact experimental technique, producing obesity by lesions in various locations within the hypothalamus. Genital dystrophy associated with adiposity was experimentally produced in various animals by injury to the hypothalamus without affecting the hypophysis (Smith, 1927; Grafe and Groenthal, 1919). In men, adiposo-genital dystrophy was observed in organic lesions of the mid-brain, such as tumours and inflammatory processes (Kraus, 1945; Soffer, 1951). It was also claimed that this condition may be due to a functional disturbance without any evident organic lesion in the pituitary hypothalamic region (Rony, 1940). The constant occurrence of impaired dark adaptation in all cases of adiposo-genital dystrophy studied seems to point to the possibility that the mechanism of scotopic vision may be dependent upon the hypothalamic function. The fact that all six cases of obesity without evident endocrine disorders showed normal dark adaptation seems also to support this opinion. Impaired dark adaptation may thus be of value in differential diagnosis of adiposo-genital dystrophy and in cases of obesity of other aetiology.
SCOTOPIC VISION IN ADIPOSO-GENITAL DYSTROPHY

Summary

Nineteen patients suffering from adiposo-genital dystrophy were examined for dark adaptation.

Impairment of dark adaptation was found in all cases.

In obese individuals without endocrine disorders, normal dark adaptation values were found.

The finding of impaired dark adaptation may be of diagnostic value in differentiating adiposo-genital dystrophy from other forms of obesity.

It is suggested that the mechanism of scotopic vision may be related to the function of the hypothalamus.

REFERENCES

Impaired Scotopic Vision in Adiposo-Genital Dystrophy

J. Landau and Y. M. Bromberg

doi: 10.1136/bjo.39.3.155

Updated information and services can be found at:
http://bjo.bmj.com/content/39/3/155.citation

These include:

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/