IMPAIRED SCOTOPIC VISION IN ADIPOSO-GENITAL
DYSTROPHY*

BY

J. LANDAU AND Y. M. BROMBERG

From the Departments of Ophthalmology and of Obstetrics and Gynaecology of the
Rothschild-Hadassah-University Hospital and Hebrew University-Hadassah Medical School
Jerusalem, Israel

IMPAIRMENT of dark adaptation was found frequently to occur in various
endocrine disturbances of the genital function, and has been reported by us
previously (Landau and Bromberg, 1950; Landau and Polishuk, 1948; Landau, Eckerling, and Polishuk, 1951; Landau and Bromberg, 1954).
Disturbed scotopic vision was observed in the majority of patients suffering
from pituitary or ovarian amenorrhea, in disorders of menopause and in
oligosperma of central origin. Patients with tumours of the pituitary and
diencephalic regions with endocrine dysfunction had distinctly disturbed
dark adaptation. It was therefore suggested that the hypothalamus, which
regulates various metabolic and gonadotropic functions, might conceivably
play a role in the mechanism of scotopic vision.

This assumption led us to study scotopic vision in adiposo-genital
dystrophy, a condition due to functional or organic disorders of the
hypothalamus.

Material and Methods

Nineteen patients, thirteen females and six males, aged from 7-27, all suffering from adiposo-
genital dystrophy, were examined for dark adaptation. As it is difficult to differentiate between
adiposo-genital dystrophy and primary gonadal failure or obesity with delayed sexual maturation,
only those patients were considered by us as adiposo-genital dystrophy cases in whom the following
clinical manifestations and laboratory findings were present:

(1) Adiposity involving particularly chin, neck, hips, and upper part of thighs;
(2) Poorly developed penis and testes in males, and atrophic uterus and vaginal mucosa with
prolonged amenorrhea in females;
(3) Absence or under-development of secondary sex characteristics;
(4) Reduction of follicle-stimulating hormone in the urine.

In some patients, other hypothalamic disorders were found, as, for instance, diabetes insipidus,
disorders of water metabolism, and insulin-resistant diabetes. In one patient of this series,
bitemporal hemianopsia pointed to the diagnosis of a tumour in the mid-brain, which was con-
firmed at operation. Disturbances of diencephalic nature were found by electro-encephalography
in many patients.

Six individuals, four females and two males, aged from 10 to 20, suffering from obesity without
genital, or other endocrine disorders, were also examined for dark adaptation. In all these cases
the distribution of body fat was not characteristic of adiposo-genital dystrophy.

Dark-adaptation tests were performed with Koch's adaptometer (Koch, 1945), a modifi-
cation of Hecht's adaptometer, after a bleaching period of 5 minutes. In no case were pathological
conditions of the eyes likely to impair dark adaptation. All the tests were carried out by the same
examiner and under identical conditions.

Results

The final average rod threshold values found in healthy control subjects and reported
in a previous study (Landau and Bromberg, 1950) were log. 3μμμμ Lamb. with a normal
range between log. 2.5μμμμ Lamb. and 3-6μμμμ Lamb. The final rod threshold values for
dark adaptation found in patients suffering from adiposo-genital dystrophy are sum-
marized in the Table (overleaf).

*Received for publication October 25, 1954.
TABLE

FINAL ROD THRESHOLD IN ADIPOSO-GENITAL DYSTROPHY

<table>
<thead>
<tr>
<th>Case No.</th>
<th>Sex</th>
<th>Age</th>
<th>Clinical Findings</th>
<th>Abnormal Laboratory Findings</th>
<th>Log (\mu \mu) Lamb.</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>19</td>
<td>Pronounced obesity
Amenorrhea
Atrophic uterus
Diabetes
Oedema
Bitemporal hemianopia</td>
<td>Low F.S.H. values
Hyperglycaemia
E.E.G.: disturbance of diencephalic nature
Atrophic vaginal smear</td>
<td>6.4</td>
<td>Tumour of diencephalic region, confirmed at operation</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>17</td>
<td>Marked obesity
Primary amenorrhea
Stunted growth
Scanty pubic and axillary hair
Atrophic uterus</td>
<td>Low F.S.H. value
Atrophic vaginal smear
Atrophic endometrium</td>
<td>4.7</td>
<td>Treated by low dosage roentgen irradiation of pituitary and ovaries; no effect</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>15</td>
<td>Marked obesity
Stunted growth
Primary amenorrhea
Under-developed secondary sex characteristics</td>
<td>Low F.S.H. values
Atrophic vaginal smear
Hypoglycaemia</td>
<td>4.6</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>16</td>
<td>Obesity
Primary amenorrhea
Under-developed genitalia and secondary sex characteristics</td>
<td>Low F.S.H. values
Atrophic vaginal smear
Small sella turcica</td>
<td>4.6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>20</td>
<td>Pronounced obesity
Primary amenorrhea
No pubic and axillary hair
Polyuria
Diabetes latens</td>
<td>Low F.S.H. values
Atrophic endometrium
Atrophic vaginal smear
Decreased sugar tolerance
Small sella turcica</td>
<td>5.2</td>
<td>Parents were first cousins</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>22</td>
<td>Marked obesity
Amenorrhea 4 years
Atrophic genitalia
Primary sterility
Headaches</td>
<td>Low F.S.H. values
Atrophic uterine and vaginal mucosa
E.E.G.: disturbance of diencephalic nature</td>
<td>6.3</td>
<td>Treated by oestrogens; withdrawal bleeding; no effect on dark adaptation</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>25</td>
<td>Obesity
Amenorrhea 6 years
Atrophic uterus
Mental deficiency
Primary sterility</td>
<td>Low F.S.H. values
Atrophic uterine and vaginal mucosa
B.M.R. 12 per cent. 17 ketosteroids 3 mg./24 hrs</td>
<td>6.6</td>
<td>Subjected to insulin shock therapy</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>22</td>
<td>Marked obesity
Amenorrhea 3 years
Stunted growth
Headaches
Primary sterility</td>
<td>Low F.S.H. values
Atrophic uterine and vaginal mucosa
Increased sugar tolerance
B.M.R. 9 per cent. Small sella turcica</td>
<td>7.2</td>
<td>Oestrogen and thyroid therapy; no effect on dark adaptation</td>
</tr>
</tbody>
</table>
SCOTOPIC VISION IN ADIPOSO-GENITAL DYSTROPHY

TABLE—cont.

<table>
<thead>
<tr>
<th>Case No.</th>
<th>Sex</th>
<th>Age</th>
<th>Clinical Findings</th>
<th>Abnormal Laboratory Findings</th>
<th>Log.141 Lam.</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>F</td>
<td>22</td>
<td>Obesity Amenorrhea 4 years</td>
<td>Low F.S.H. values 17 ketosteroid 5 mg./24 hrs</td>
<td>4:6</td>
<td>Treated by mare serum and chorionic gonadotropins; no effect</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Headaches Polynia</td>
<td>B.M.R. 6 per cent. Atrophic endometrium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>F</td>
<td>14</td>
<td>Very marked obesity No secondary</td>
<td>Low F.S.H. values Small sella turcica</td>
<td>6:9</td>
<td>Parents related; mother suffering from diabetes Mental retardation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>sex characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>22</td>
<td>Obesity Amenorrhea 4 years</td>
<td>Low F.S.H. values Atrophic uterine and vaginal mucosa Glucosuria</td>
<td>4:6</td>
<td>Treated by oestrogens and progestrone; no effect Mental retardation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Atrophic uterus Primary sterility</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>F</td>
<td>23</td>
<td>Obesity Amenorrhea 3 years</td>
<td>Low F.S.H. values B.M.R. 17 per cent. E.C.G.: suggesting di-</td>
<td>4:7</td>
<td>Treated by oestrogens and progestrone; no effect</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Headaches Primary sterility</td>
<td>encephalitic disturbance Hyperglycaemia Atrophic endometrium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>F</td>
<td>27</td>
<td>Obesity Amenorrhea 9 years</td>
<td>Low F.S.H. values Hyperglycaemia Atrophic endometrium E.E.G.:</td>
<td>5:8</td>
<td>Treated by low dosage roentgen irradiation; no effect</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Atrophic genitalia</td>
<td>suggesting di-encephalitic disturbances</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>M</td>
<td>14</td>
<td>Obesity Very small penis</td>
<td>Low F.S.H. values 17 ketosteroid 3 mg./24 hrs</td>
<td>5:7</td>
<td>Parents related</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bilateral cryptorchismus</td>
<td></td>
<td></td>
<td>Treated by chorionic gonadotropin; no effect</td>
</tr>
<tr>
<td>15</td>
<td>M</td>
<td>13½</td>
<td>Obesity Stunted growth Small penis</td>
<td>Low F.S.H. values B.M.R. 16 per cent. Small sella turcica</td>
<td>5:6</td>
<td>Suffered from encephalitis 8 years previously Mental retardation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>and testes No axillary and pubic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>hair</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>M</td>
<td>8½</td>
<td>Obesity Small penis Bilateral</td>
<td>Small sella turcica Decreased sugar tolerance</td>
<td>6:6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cryptorchismus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>M</td>
<td>6½</td>
<td>Obesity Small penis and testes</td>
<td>Small sella turcica</td>
<td>5:5</td>
<td>Brother of Case 16</td>
</tr>
<tr>
<td>18</td>
<td>M</td>
<td>12</td>
<td>Obesity Stunted growth Small penis</td>
<td>Low F.S.H. values B.M.R. 24 per cent.</td>
<td>5:7</td>
<td>Encephalitis 6 years previously Epilepsy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bilateral cryptorchismus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No pubic and axillary hair</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>and testes Scanty pubic and</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>axillary hair</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Table shows clearly that all those patients examined who were suffering from adiposo-genital dystrophy had disturbed scotopic vision. The final rod threshold values varied from log. 4.9μm Lamb. to log. 7.2μm Lamb. (mean log. 5.57μm Lamb.). The six cases of obesity without evident endocrine disorders showed normal rod threshold values.

Discussion

Impairment of dark adaptation, found by us to occur in various endocrine disorders of the genital function, seems not to be related to any of the generally known and accepted factors of disturbed scotopic vision, as reviewed by Duke-Elder (1942).

As those conditions were related to interference with hypothalamic, pituitary, and ovarian functions, it seemed probable that impaired dark adaptation observed in these disorders may also be connected with the same regulating mechanism. The failure to improve impairment of dark adaptation by substitutive gonadal hormone therapy (oestrogen, progesterone, testosterone) led us to assume that disturbed scotopic vision is related rather to a dysfunction of higher centres in the pituitary or hypothalamus, regulating the hormonal activity of the gonads.

In gonadal failure secondary to pituitary deficiency in both women and men, the scotopic vision was very frequently, but not constantly, disturbed. On the other hand, a constant and distinct impairment of dark adaptation was found in all cases of adiposo-genital dystrophy.

There is a consensus of opinion that this disease is induced by organic or functional disorders of the hypothalamus (Taubenhaus and Oberhill, 1950; Soffer, 1951). The role of the hypothalamus in the regulation of fat metabolism in animals has been experimentally demonstrated by Crowe, Cushing, and Homans (1910), and by Camus and Roussy (1913). Hetherington and Ranson (1939, 1942) confirmed these findings by exact experimental technique, producing obesity by lesions in various locations within the hypothalamus. Genital dystrophy associated with adiposity was experimentally produced in various animals by injury to the hypothalamus without affecting the hypophysis (Smith, 1927; Grafe and Groenthal, 1919). In men, adiposo-genital dystrophy was observed in organic lesions of the mid-brain, such as tumours and inflammatory processes (Kraus, 1945; Soffer, 1951). It was also claimed that this condition may be due to a functional disturbance without any evident organic lesion in the pituitary hypothalamic region (Rony, 1940). The constant occurrence of impaired dark adaptation in all cases of adiposo-genital dystrophy studied seems to point to the possibility that the mechanism of scotopic vision may be dependent upon the hypothalamic function. The fact that all six cases of obesity without evident endocrine disorders showed normal dark adaptation seems also to support this opinion. Impaired dark adaptation may thus be of value in differential diagnosis of adiposo-genital dystrophy and in cases of obesity of other aetiology.
SCOTOPIC VISION IN ADIPOSO-GENITAL DYSTROPHY

Summary

Nineteen patients suffering from adiposo-genital dystrophy were examined for dark adaptation.

Impairment of dark adaptation was found in all cases.

In obese individuals without endocrine disorders, normal dark adaptation values were found.

The finding of impaired dark adaptation may be of diagnostic value in differentiating adiposo-genital dystrophy from other forms of obesity.

It is suggested that the mechanism of scotopic vision may be related to the function of the hypothalamus.

REFERENCES

Impaired Scotopic Vision in Adiposo-Genital Dystrophy

J. Landau and Y. M. Bromberg

doi: 10.1136/bjo.39.3.155

Updated information and services can be found at:
http://bjo.bmj.com/content/39/3/155.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/