Intravitreal air in retinal detachment surgery

HECTOR B. CHAWLA and COLIN H. BIRCHALL

Princess Alexandra Eye Pavilion, Edinburgh Royal Infirmary

The use of intravitreal air in the treatment of retinal detachment was described by Rosengren (1938, 1951), and Norton, Aaberg, Fung, and Curtin (1969) applied this technique to the treatment of giant tears. The method described in this paper differs from that of Rosengren in several features.

A series of forty patients is divided into two broad groups:

(a) Those appearing de novo at the Outpatient Department and undergoing a first operation for retinal detachment.

(b) Relapsed detachments following some other previous operative technique. Eight aphakic patients previously described in detail (Chawla, 1973) are included.

The method described is used in all cases in which tears lie superiorly between the 8 and 4 o'clock meridians. If additional inferior tears exist, some other manoeuvre must be included.

Method

EXAMINATION

The patient is admitted to the ward, and examination is undertaken with the binocular indirect ophthalmoscope. The periphery of both eyes is examined using transpalpebral indentation of the sclera; no local anaesthetic drops are instilled into the conjunctival sac. The patients are not compelled to rest in bed unless a functioning macula is in imminent danger of detachment. Double padding is never used.

Slit-lamp examination is essential to determine the state of the vitreous. If narrow anterior chamber angles are suspected, gonioscopy is performed.

In the preoperative state, a large amount of subretinal fluid is an advantage for two reasons:

(1) Subretinal fluid can be released with greater safety. (2) Removal of fluid at operation makes way for the requisite 1 to 3 ml. air to be injected. Thus rest in bed may be unhelpful.

OPERATION

The patient is operated upon as soon as possible under general anaesthesia. A 360° limbal conjunctival incision is made and the rectus muscles are secured with 5/o silk stay sutures. The sclera is examined; any thinning and the position of the vortex veins are noted.

Cryopexy to the areas of tear(s) is performed; the monitoring of each application prevents over-freezing. The onset of iceball formation is clearly seen. The cryoprobe must not be removed from the sclera until it has defrosted, thus avoiding scleral cracking (Shea, 1969) and rupture of vortex veins during posterior applications.
The site of subretinal fluid release is placed near the area of greatest retinal elevation, provided the vortex ampullae permit this. In practice this is usually near the rectus muscles. A radial incision is made in the sclera with a Bard Parker No. 15 blade, deep enough to expose the black of the choroid. The choroid is then punctured by light touching with a fine diathermy point. Gentle pressure is applied to the globe with cotton-tip applicators in order to obtain the maximal flow of subretinal fluid through the sclerotomy. With flat detachments, room must be made for the intravitreal air. This can be achieved by sclerotomy as near as possible to the tear to allow fluid vitreous to flow through the tear and the sclerotomy,—“through tear” drainage! If this is not possible, fluid vitreous may be removed through the pars plana—a purse-string suture (Ethiflex—Ethicon No. Special 135/70 on a half-circle needle) is placed around the injection site and perforation is then made with a small gauge needle No. 25G followed by a larger gauge needle No. 21G on a 2-ml syringe. Up to 2 ml of fluid vitreous may then be removed. The large needle is left in situ, an air syringe is substituted, and, after injection of air, the suture is tightened as the needle is withdrawn.

In bullous detachments, between 1 and 3 ml of sterile air are injected into the eye through the pars plana between the rectus muscles. The posterior limit of the pars plana is indicated by the furrow produced between the rectus insertions by applying tension on the stay sutures. Sloping backwards to avoid the lens, the perforation should be made with a No. 25G needle 2 mm. anterior to the furrow. A single continuous movement with a dry syringe will inject the air in a single bubble (Dobie, 1969). The eye is palpated gently during the injection of air to avoid raised intraocular pressure.

A precautionary visualisation of the central retinal artery is made at this stage.

The No. 40 silicone band is placed deep to the rectus muscles to encircle the sclera, so that it lies behind the site of the tear(s) and covers a greater circle of the eye. Thus it is usually equatorial. To gauge the required tension, the band should be tightened to contract the globe deep to the rectus insertions. On being secured over a greater circle of the eye from its initial position, it achieves the correct tension (Dobie, 1969). It must be stressed that this band is not covering the tears and is not tension sutured; it causes only gentle counter-traction on the globe. The band is secured by four Ethiflex sutures in the four quadrants and the ends are secured in the lower nasal quadrant with a Watzke sheath using Chawla forceps (Chawla, 1970).

The conjunctiva is sutured with two or three interrupted 6/0 catgut sutures. Contrary to some opinion, the retina may still be seen after the air is in situ.

Postoperative care

This is kept simple. The patient is positioned so as to allow the air bubble to push the retinal tears against the treated choroidal bed. Only the operated eye is padded, and local treatment consists of 1 per cent. atropine drops twice daily and Sofradex drops four times a day. Systemic antibiotic is not routinely given.

Strict rest in bed is not enjoined and stenopoeic glasses have not been used.

Particulars of the forty patients are listed in the Table (overleaf).

Results

Of 41 cases of detachment of the retina in 40 patients, 37 were successfully re-attached. These patients have been followed-up for various lengths of time since early in 1970 and, apart from four incurable detachments (Cases 8, 20, 29, and 32) and one late vitreous haemorrhage (Case 39), none has shown any advance in vitreous pathology or signs of relapse.

Discussion

The discovery of all the retinal tears, as stated by Gonin (1928), still remains the chief requirement for any successful retinal detachment operation. The second vital need is to seal these tears, but just how this should be achieved is not beyond controversy.
Table Clinical and surgical features of forty patients with retinal detachment

<table>
<thead>
<tr>
<th>Case</th>
<th>Age (yrs)</th>
<th>Sex</th>
<th>Refraction</th>
<th>Duration of detachment</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GROUP A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>74</td>
<td>M</td>
<td>Mild myope</td>
<td>6 days</td>
<td>R upper temp. quadrant spreading to upper nas and downwards to lower temp. Macula OFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Phakic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>35</td>
<td>F</td>
<td>High myope</td>
<td>Not known</td>
<td>L inferior half</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Phakic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>51</td>
<td>F</td>
<td>High myope</td>
<td>4 mths</td>
<td>R total</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Phakic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>51</td>
<td>F</td>
<td>High myope</td>
<td>5 days</td>
<td>L inferior nasal 10 o’c round to inferior temporal 4 o’c Macula ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Phakic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>60</td>
<td>F</td>
<td>Emmetropic</td>
<td>2 days</td>
<td>R superior half Macula OFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Phakic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>17</td>
<td>M</td>
<td>Moderate hypermetrope</td>
<td>1 mth</td>
<td>R total</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Phakic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>63</td>
<td>F</td>
<td>High myope</td>
<td>1 wk</td>
<td>L upper temp. discrete; upper nasal discrete No continuity of elevation seen between detachment areas</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Phakic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>50</td>
<td>F</td>
<td>High myope</td>
<td>3 wks</td>
<td>R subtotal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Phakic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>60</td>
<td>F</td>
<td>High myope</td>
<td>2 wks</td>
<td>R upper nasal quadrantic spreading down to lower nasal quadrantic Macula ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Phakic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>69</td>
<td>F</td>
<td>Emmetropic</td>
<td>4 wks</td>
<td>R upper and lower temp Macula OFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Phakic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>54</td>
<td>F</td>
<td>Emmetropic</td>
<td>6 mths</td>
<td>L temp. half Macula OFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Phakic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>65</td>
<td>M</td>
<td>Emmetropic</td>
<td>1 wk</td>
<td>R temporal half Macula OFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Phakic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>63</td>
<td>F</td>
<td>Mild hypermetrope</td>
<td>10 days</td>
<td>R small peripheral temp. Macula ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Phakic</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Intravitreal Air in Retinal Detachment Surgery

Features of Tears

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lattice degeneration superiorly 10 to 2 o’c</td>
<td>HM</td>
<td>Prophylactic cryopexy to other eye required</td>
<td>6/12</td>
<td></td>
</tr>
<tr>
<td>Retina FLAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inferior temporal dialysis with fibrotic edges</td>
<td>Inferior temp. and nasal areas white with pressure</td>
<td>CF 1 m</td>
<td>Prophylactic cryopexy to other eye required</td>
<td>6/60</td>
</tr>
<tr>
<td>Retina FLAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper temporal equatorial thinning</td>
<td>CF 1 m.</td>
<td></td>
<td>Head down position not tolerated; encircling 3 mm. sponge; Light coagulation</td>
<td>6/36</td>
</tr>
<tr>
<td>Retina FLAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Previous detachment with upper temp. hole located</td>
<td>6/6 pt</td>
<td></td>
<td>Required removal vitreous prior to air injection. Had further air injected 4 days post-op.</td>
<td>6/6</td>
</tr>
<tr>
<td>Failed sponge implant Total detachment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peripheral degeneration</td>
<td>CF 2 ft</td>
<td></td>
<td>NOT FLAT post-op.</td>
<td>PL</td>
</tr>
<tr>
<td>Dense cataract</td>
<td>6/18 N5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eye poor since childhood</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open “mirror image” tear 1.30 o’c</td>
<td>CF 1 ft</td>
<td></td>
<td>Prophylactic cryopexy to other eye</td>
<td>6/36 pt</td>
</tr>
<tr>
<td>Retina FLAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>“Mirror image” tears 12 o’c open and open tear retro-oral at 7 o’c</td>
<td>HM</td>
<td></td>
<td>No. 40 silicone band migrated forwards—removed 5 mths post-op. Prophylactic cryopexy other eye</td>
<td>6/9</td>
</tr>
<tr>
<td>Retina FLAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small macular holes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small retro-oral tears 12–12.30 o’c Full round hole 2 o’c</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large equatorial tears 11 and 12 o’c</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large equatorial horseshoe tear 9 o’c</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retina FLAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient has simple glaucoma</td>
<td>6/36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prophylactic cryopexy to other eye 3 yr. history of vitreous floaters and photopsiae</td>
<td>6/12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case</td>
<td>Age (yrs)</td>
<td>Sex</td>
<td>Refraction</td>
<td>Duration of detachment</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>-----</td>
<td>------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>14</td>
<td>62</td>
<td>M</td>
<td>Mild myope</td>
<td>3 wks</td>
</tr>
<tr>
<td>15</td>
<td>23</td>
<td>F</td>
<td>Mild myope</td>
<td>Not known</td>
</tr>
<tr>
<td>16</td>
<td>61</td>
<td>M</td>
<td>Emmetropic</td>
<td>1 wk</td>
</tr>
<tr>
<td>17</td>
<td>81</td>
<td>F</td>
<td>Mild myope</td>
<td>Not known</td>
</tr>
<tr>
<td>18</td>
<td>55</td>
<td>M</td>
<td>High myope</td>
<td>10 days</td>
</tr>
<tr>
<td>19</td>
<td>25</td>
<td>M</td>
<td>Mild myope</td>
<td>6 wks in R ? in L</td>
</tr>
<tr>
<td>20</td>
<td>66</td>
<td>F</td>
<td>Mild myope</td>
<td>Not known</td>
</tr>
<tr>
<td>21</td>
<td>67</td>
<td>F</td>
<td>Emmetropic</td>
<td>2 mths</td>
</tr>
<tr>
<td>22</td>
<td>76</td>
<td>M</td>
<td>Moderate hypermetrope</td>
<td>1 mth</td>
</tr>
<tr>
<td>23</td>
<td>63</td>
<td>M</td>
<td>Moderate myope</td>
<td>1 wk</td>
</tr>
<tr>
<td>24</td>
<td>51</td>
<td>M</td>
<td>Emmetropic</td>
<td>Not known</td>
</tr>
</tbody>
</table>
Intravitreal air in retinal detachment surgery

Features of tears

<table>
<thead>
<tr>
<th>State of vitreous</th>
<th>State of fellow eye</th>
<th>Pre-op. visual acuity</th>
<th>Comment</th>
<th>Post-op. visual acuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large equatorial tear 3.30 o'clock Surrounded by lattice degeneration Mobile vitreous</td>
<td>Nothing abnormal detected</td>
<td>6/9 pt N5</td>
<td>FLAT</td>
<td>6/5</td>
</tr>
<tr>
<td>Inf. temp. dialysis Vitreous NAD</td>
<td>Patches of cystoid change lower temp. peripheral retina</td>
<td>6/5 N5</td>
<td>No. 40 silicone band removed electively 6 weeks post-op. owing to youth</td>
<td>6/6</td>
</tr>
<tr>
<td>Round equatorial hole 10.30 o'clock Flat tear ora 1 o'clock</td>
<td>"Mirror image" flat tear at ora 11 o'clock Retina FLAT</td>
<td></td>
<td>Prophylactic cryopexy to other eye required</td>
<td>FLAT</td>
</tr>
<tr>
<td>2 upper temp. horseshoe tears equatorially 12 and 11 o'clock</td>
<td>VA = No PL Patient has simple glaucoma, dislocated, cataractous lens</td>
<td>6/18 pt</td>
<td>Patient suffered sudden vitreous haemorrhage 2 mths post-op. This cleared and retina FLAT</td>
<td>6/18 HM</td>
</tr>
<tr>
<td>Multiple small equatorial holes in upper nasal periphery Peripheral degeneration other quadrants</td>
<td>Nothing abnormal detected</td>
<td>6/24-1</td>
<td>Anisometropic Fellow eye emmetropic FLAT</td>
<td>6/12</td>
</tr>
<tr>
<td>Inferior temp. dialyses R and L Vitreous floats (R) Vitreous normal (L)</td>
<td>See previous columns</td>
<td>R 6/36 L 6/5</td>
<td>Early case, initially nursed with head tilted down Guttered implant used also on R side FLAT</td>
<td>R 6/12 L 6/5</td>
</tr>
<tr>
<td>Equatorial horseshoe tear 1.30 o'clock Two small round holes equatorially 10.30 and 11 o'clock Lattice degeneration superiorly Tears with curled edges 2 severe fibrous vitreous strands pulling on operculum-taut</td>
<td>Lattice degeneration equatorially 9.30 and 10 o'clock</td>
<td>HM</td>
<td>Normal procedure + radial sponge to indent over horseshoe tear 1st op. unsuccessful. Sponge removed 2nd op.—7 mm. silastic sponge encirclement Massive vitreous retraction Prophylactic cryopexy to fellow eye NOT FLAT</td>
<td>HM</td>
</tr>
<tr>
<td>3 small holes in upper nasal area 12.30 to 1 o'clock just behind ora serrata Peripheral postequatorial region all white with pressure</td>
<td>"Mirror image" lattice degeneration</td>
<td>HM</td>
<td>No No. 40 silicone band was used here for counter-traction</td>
<td>6/18 pt</td>
</tr>
<tr>
<td>Equatorial horseshoe tear 11 o'clock Fixed immobile vitreous strands</td>
<td>Normal vitreous No degeneration seen in periphery</td>
<td>CF 1 m. N/48</td>
<td>FLAT</td>
<td>6/18</td>
</tr>
<tr>
<td>Equatorial lattice degeneration + + Multiple cracks 10, 11, and 6 o'clock</td>
<td>Total detachment Failed Arruga string</td>
<td>6/18</td>
<td>6 o'clock tear not sealed by radial sponge or any other scleral manoeuvre Band slid backwards (intentional) Post-op. light coagulation required FLAT</td>
<td>6/12</td>
</tr>
<tr>
<td>Giant horseshoe tear on equator 11 o'clock</td>
<td>Nothing abnormal detected</td>
<td>CF Amblyopic Childhood Squint</td>
<td>Very slight leak due to non-contiguous cryopexy around the hole Sealed with light coagulation FLAT</td>
<td>CF</td>
</tr>
</tbody>
</table>

Comment:
- FLAT: Flat retina
- HM: Healthy retina

Post-op. visual acuity:
- 6/5: 6/5 vision
- 6/6: 6/6 vision
- 6/18: 6/18 vision
- 6/12: 6/12 vision
- CF: Count fingers
- N/48: No light perception
Table (continued)

<table>
<thead>
<tr>
<th>Case</th>
<th>Age (yrs)</th>
<th>Sex</th>
<th>Refraction</th>
<th>Duration of detachment</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>61</td>
<td>F</td>
<td>Moderate myope Phakic</td>
<td>4 mths</td>
<td>L subtotal Small area of upper temp. quadrant only attached Macula OFF</td>
</tr>
<tr>
<td>26</td>
<td>82</td>
<td>M</td>
<td>Mild myope Phakic</td>
<td>4 wks</td>
<td>L superior temp. quadrant spreading Macula OFF</td>
</tr>
<tr>
<td>27</td>
<td>68</td>
<td>M</td>
<td>High myope Phakic</td>
<td>2 days</td>
<td>L superior temp. quadrant spreading nasally Macula OFF</td>
</tr>
<tr>
<td>28</td>
<td>65</td>
<td>M</td>
<td>Moderate myope Phakic</td>
<td>1 wk</td>
<td>R superior temp. quadrant spreading to nasal side Macula ON</td>
</tr>
<tr>
<td>29</td>
<td>54</td>
<td>F</td>
<td>High myope Phakic</td>
<td>2 wks</td>
<td>R total</td>
</tr>
<tr>
<td>30</td>
<td>79</td>
<td>M</td>
<td>Moderate myope Aphakic</td>
<td>1 day</td>
<td>L upper temp. quadrant only Macula ON</td>
</tr>
<tr>
<td>31</td>
<td>79</td>
<td>M</td>
<td>Mild myope Aphakic</td>
<td>2 days</td>
<td>L nasal half Macula ON</td>
</tr>
<tr>
<td>32</td>
<td>74</td>
<td>F</td>
<td>Emmetropic Aphakic</td>
<td>4 wks+ ? more</td>
<td>L subtotal</td>
</tr>
<tr>
<td>33</td>
<td>65</td>
<td>M</td>
<td>Myope Aphakic</td>
<td>2 wks</td>
<td>R total</td>
</tr>
<tr>
<td>34</td>
<td>65</td>
<td>M</td>
<td>Mild myope Phakic</td>
<td>10 days</td>
<td>R. temp. lower half Macula OFF</td>
</tr>
</tbody>
</table>

GROUP B

<table>
<thead>
<tr>
<th>Case</th>
<th>Age (yrs)</th>
<th>Sex</th>
<th>Refraction</th>
<th>Duration of detachment</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>63</td>
<td>F</td>
<td>Moderate myope Aphakic</td>
<td>4 days</td>
<td>R subtotal Macula OFF</td>
</tr>
<tr>
<td>36</td>
<td>23</td>
<td>M</td>
<td>Emmetropic Aphakic</td>
<td>Not known</td>
<td>R upper temp. following needling op. for traumatic cataract Macula OFF</td>
</tr>
</tbody>
</table>
Intravitreal air in retinal detachment surgery

<table>
<thead>
<tr>
<th>Features of tears</th>
<th>State of fellow eye</th>
<th>Pre-op. visual acuity</th>
<th>Comment</th>
<th>Post-op. visual acuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>State of vitreous</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 equatorial round holes 1 and 1.30 o’c Surrounded by extensive lattice degeneration</td>
<td>Some degenerate retina 7 o’c equatorially</td>
<td>HM</td>
<td>Prophylactic cryopexy to other eye required</td>
<td>6/18</td>
</tr>
<tr>
<td>Equatorial horseshoe tear 1.30 o’c Vitreous NAD</td>
<td>Nothing abnormal detected</td>
<td>HM</td>
<td>FLAT</td>
<td>6/24</td>
</tr>
<tr>
<td>Huge slit-like tear extending backwards from equator with rolled operculum</td>
<td>Superiorly thinned retina white with pressure</td>
<td>6/36</td>
<td>Little light coagulation required 7 days post-op. equatorially</td>
<td>6/24</td>
</tr>
<tr>
<td>Large postequatorial slit tear 10.30 o’c Vitreous synchisis</td>
<td>“Mirror image” tear 1.30 o’c Retina FLAT</td>
<td>6/18</td>
<td>Detached eye remained flat for 7 weeks; then slight leakage from tear caused subsequent detachment Re-op. with “tear drainage” FLAT</td>
<td>6/12</td>
</tr>
<tr>
<td>2 retro-oral tears 10 and 1 o’c Equatorial horseshoe 2 o’c Taut operculum Vitreous synchisis ++</td>
<td>Nasal quadrants paving stone degeneration</td>
<td>CF</td>
<td>Vitreous retraction Failed air 1st op. Radial sponge failed 2nd op. NOT FLAT</td>
<td>PL</td>
</tr>
<tr>
<td>Equatorial horseshoe tear 2 o’c</td>
<td>Had detachment 7 yrs before Not operated on at that time</td>
<td>6/60</td>
<td>Thin sclera Guttered unburied silicone plate over tear FLAT</td>
<td>6/9</td>
</tr>
<tr>
<td>Open oral tear 12 o’c 2 small round retro-oral tears 10 o’c Vitreous synchisis</td>
<td>Myopic Otherwise normal</td>
<td>6/6</td>
<td>FLAT</td>
<td>6/6</td>
</tr>
<tr>
<td>Retro-oral horseshoe tear 10 and 6.30 o’c</td>
<td>Nothing abnormal detected</td>
<td>HM</td>
<td>Massive vitreous retraction Vitreous haemorrhage at top NOT FLAT</td>
<td>HM</td>
</tr>
<tr>
<td>Upper temp. horseshoe tear at equator 11 o’c</td>
<td>Nothing abnormal detected</td>
<td>HM</td>
<td>Relapsed detachment “Tear drainage” at re-op. FLAT</td>
<td>6/18</td>
</tr>
<tr>
<td>Equatorial round tear 10 o’c Vitreous NAD</td>
<td>Equatorial degeneration 2 and 5 o’c</td>
<td>HM</td>
<td>Prophylactic cryopexy to fellow eye required FLAT</td>
<td>6/60</td>
</tr>
<tr>
<td>Round hole at ora serrata 10 o’c Equatorial lattice degeneration 10 and 11 o’c Anterior vitreous opacities</td>
<td>Aphakic</td>
<td>HM</td>
<td>Originally circumferential 7 mm. silastic sponge used; removed at 2nd op. Intravitreal air for choroidal detachment Tear later sealed with radial sponge FLAT</td>
<td>6/12</td>
</tr>
<tr>
<td>Giant upper temp. dialysis fluid vitreous</td>
<td>Nothing abnormal detected</td>
<td>HM</td>
<td>Retina held by incarceration Non-progressive elevation FLAT</td>
<td>CF</td>
</tr>
</tbody>
</table>
Table (continued)

<table>
<thead>
<tr>
<th>Case</th>
<th>Age (yrs)</th>
<th>Sex</th>
<th>Refraction</th>
<th>Duration of detachment</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>20</td>
<td>F</td>
<td>Mild myope</td>
<td>6 wks</td>
<td>R extensive temp. half Macula ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Phakic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>70</td>
<td>M</td>
<td>Moderate hypermetrope</td>
<td>3½ mths</td>
<td>L lower half Macula OFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Aphakic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>59</td>
<td>F</td>
<td>Emmetropic</td>
<td>6 days</td>
<td>L subtotal only a little of upper temp. quadrant attached</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Aphakic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>43</td>
<td>M</td>
<td>Emmetropic</td>
<td>1 yr+</td>
<td>L total Macula OFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Aphakic</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mild hypermetrope = 0---+3D Moderate hypermetrope = +3---+6D High hypermetrope

N.B.—In our experience the relationship of the limits of the retinal detachment to the likely positions of the retinal...

The method described above may be recommended on several grounds. It is successful, gentle, and simple, takes little more than one hour to perform, and leaves the eye contours almost normal. Patients find the quiet eye and rapid postoperative mobilization encouraging and comfortable. We have occasionally used this method for inferior tears (Cases 2, 6, and 19), but the head-down position makes great demands on even the most phlegmatic of subjects.

In our hands monitored cryopexy has eliminated the formation of secondary tears and has made for easier exposure at re-operation, but we have found that, in very vascular operative fields, freeze-burns of the chorio-retina are hard to produce.

The No. 40 silicone band is remarkably inert, and since it is not tension sutured, there is little fear of suture cut-out and band migration. To date, we have had to remove only one band, and even in this case the ocular disturbance was minimal (Case 11).

We have been using and modifying this technique since our first case early in 1970. The following cases call for special comment.

Group A

Case 1 The enormous tear stretching from the equator to the disc was untreatable by conventional scleral buckling; with air, however, the retina was easily replaced and the sealing even survived the patient's falling out of bed on the third post-operative day.

Case 8 This highly myopic retina had seven tears (equatorial and macular) and vitreous haemorrhage may have concealed more. The retina relapsed 1 month after surgery.

Case 20 Clearing vitreous haemorrhage revealed a 6-month-old detachment with taut strands pulling on the tear edges. When air injection failed, a large encircling sponge held the retina flat for a month until advancing shrinkage caused relapse.
The 'characteristics of tears' and 'state of vitreous' are detailed in the following table:

<table>
<thead>
<tr>
<th>Characteristics of Tears</th>
<th>State of fellow eye</th>
<th>Pre-op. visual acuity</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Giant dialysis infero-temp. quadrant with numerous small holes</td>
<td>Nothing abnormal detected</td>
<td>Amblyopic HM</td>
<td>Previously 2 ops with quadrantica</td>
</tr>
<tr>
<td>Previously-used suture tear</td>
<td>Nothing abnormal detected</td>
<td>CF 2 m.</td>
<td>Chronic simple glaucoma</td>
</tr>
<tr>
<td>Horseshoe tear 10 o'clock equatorial</td>
<td>Lattice degeneration 12 o'clock</td>
<td>HM</td>
<td>Prophylactic cryopexy to fellow eye required</td>
</tr>
<tr>
<td>Quatorial round tears open 10 and 2 o'clock</td>
<td>Nothing of note</td>
<td>HM</td>
<td>Vitreous irreparably damaged by multiple ops</td>
</tr>
</tbody>
</table>

= +6D and upwards Mild myope = 0--3D Moderate myope = 3D--6D High myope = -6D and upwards tears agrees with those described by Lincoff (1971).

Cases 24, 28, and 33 In all these cases there was leakage from the original tears which the too sparse cryopexy had failed to seal. Cases 28 and 33 responded to further cryopexy in a wider circle around the tears and their shallow detachments required "through-tear" drainage to make room for the intravitreal air.

Case 24 responded to simple light coagulation over the inadequately frozen areas at the posterior angle of the tear.

Case 29 The large upper equatorial tear defied closure at two operations, first with air and then with a radial sponge. Although it is idle to speculate, the two approaches combined in a single operation might well have contained the traction forces which pulled the retina too far for surgery to be successful.

Case 32 In this longstanding detachment, alternating posturing failed to seal the lower of the two large tears which lay behind the ora at 6.30 and 10 o'clock. Advancing fibrosis dissuaded us from further interference.

Group B

All six cases achieved flat retinæ although, in Case 40, the multiple surgical procedures reduced the vitreous to a network of optically useless bands. In Case 36 a non-progressive elevation remains in the lower temporal area.

The dangers of this method are noteworthy, but happily in our experience they are only theoretical.

The greatest risk is closure of the central retinal artery by over-inflation of the eye. Intravenous Diamox 500 mg. will bring about a leisurely fall in intraocular pressure. If the urgency is greater, then 500 ml. 25 per cent. Mannitol may be given quickly by the same
route. A paracentesis and finally removal of air through the pars plana will lower the intraocular pressure even more quickly, but this should be reserved for desperate situations; it is surgically inelegant and involves further penetration into the vitreous cavity.

Other hazards include:

1. Angle closure (due to forward movement of the iris diaphragm)
2. Tearing off the inner layer of the pars plana
3. Touching the lens
4. Tearing a retinal bulla
5. Passage of air deep to the retina
6. Intraocular infections
7. Injection-site bleeding.

We have experienced only the last of these complications and this problem has now been eliminated by previous puncture with a catholysis point. Of the 35 patients with detachments in the first eye, ten had other ocular degenerations which were considered sufficiently dangerous to warrant prophylactic cryopexy or light coagulation.

Summary

The use of intravitreal air, cryopexy, and an encircling No. 40 band is discussed in relation to forty patients (41 eyes including eight aphakics) with both primary and relapsed retinal detachments. The technique is offered as a simple alternative to the more complicated scleral buckling techniques for phakic and aphakic retinal detachment with upper tears between the 8 and 4 o’clock meridians.

Our thanks are due to Prof. G. I. Scott, Dr. J. F. Cullen, Dr. C. R. S. Jackson, Dr. J. Hughes, and Dr. G. T. Millar for permission to manage and describe any of their cases.

References

DOBBIE, J. G. (1969) Personal communication
ROSENGREN, B. (1938) *Acta ophtal. (Kbh.)*, 16, 177
B.M.A., London
Intravitreal air in retinal detachment surgery.

H B Chawla and C H Birchall

Br J Ophthalmol 1973 57: 60-70
doi: 10.1136/bjo.57.1.60

Updated information and services can be found at:
http://bjo.bmj.com/content/57/1/60.citation

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Errata
An erratum has been published regarding this article. Please see next page or:
/content/57/6/440.full.pdf

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/
examination. They showed that there was a definite histological pattern of mucopolysaccharide deposits in the inner layers of the pigment epithelium, distinguishing them from colloid bodies. Fluorescence retinal photography showed widespread background mottling (Brown and Hill, 1968). The genetic pattern is not definitely known although both dominant and recessive patterns have been described (Duke-Elder and Dobree, 1967).

This condition is often misdiagnosed as tapeto-retinal dystrophy, but can be distinguished by the typical morphological appearance, benign course, normal or near normal dark adaptation, and minimal field loss. The electroretinogram and electro-oculogram may be normal or slightly reduced. Though familial cases have been described, no history of similar lesions in other members of the family has been obtained in many cases.

Summary

A case of fundus flavimaculatus is described, and the differential diagnosis from tapeto-retinal dystrophy discussed.

I am grateful to the Superintendent, Government Ophthalmic Hospital, Madras, for permitting me to report this case, and to Dr. J. Agrawal for the fundus photographs.

References

Correction

In the article by H. B. Chawla and C. H. Birchall in the January issue (Brit. J. Ophthal., 1973, 57, 60), on p. 61, l. 24, for contract read contact.

To gauge the required tension, the band should be tightened to contact the globe deep to the rectus insertions.