Atenolol versus propranolol
A comparison of ocular hypotensive effect of an oral dose

MARGARET J. MACDONALD, PATRICIA M. CULLEN AND CALBERT I. PHILLIPS
From the Department of Ophthalmology, University of Edinburgh, and Princess Alexandra Eye Pavilion, Edinburgh

Both atenolol and propranolol by mouth reduce ocular tension in normal and glaucomatous eyes (Phillips, Howitt, and Rowlands, 1967; Elliot, Cullen, and Phillips, 1975; Wettrell and Pandolfi, 1975). These drugs are β-adrenergic blockers but propranolol affects both β_1 and β_2 receptors (as well as having a 'membrane' effect), while atenolol is a more specific β_1 receptor antagonist and lacks the membrane-stabilizing activity of propranolol.

Aims
The aim of this study was to compare the ocular hypotensive actions of single oral equipotent doses of atenolol (50 mg) and propranolol (40 mg) in a double-blind cross-over study on 10 patients.

Selection of patients
The 10 individuals were chosen from patients attending glaucoma clinics; they comprised six with open-angle glaucoma, three with chronic closed-angle glaucoma, and one with ocular hypertension. They all satisfied previously-established criteria regarding age and general health—namely, they were aged 70 years or less and had no evidence of cardiorespiratory disease or diabetes, and had normal renal function. Only one eye from each patient, chosen at random, was included in the study.

Details of the patients including previous treatment to the eye examined are given in Table I.

Methods
Conditions were standardized as far as possible. Local treatment to the eye to be examined and systemic carbonic anhydrase inhibitors were stopped 24 hours before test days. Patients attended as outpatients between 9.0 a.m. and 4 p.m. with at least a week between test days. After initial applanation tonometry on the eye randomly selected for examination, the blood pressure and pulse rate were measured and either 50 mg of atenolol or 40 mg of propranolol was given by mouth. The observers were unaware of which treatment was given and the order of administration was randomized. The same three properties were measured at hourly intervals for seven hours thereafter, by the same examiners. The same procedure was carried out on the second test day with cross-over of the drugs; five patients (at random) had atenolol first and propranolol second, while the other five had the drugs in the reverse order.

Results
OCULAR TENSION
In all 10 patients ocular tension fell after both atenolol and propranolol. For both treatments a significant reduction in mean tensions occurred two hours after administration and was maintained after seven hours. However, at all times the mean fall in ocular tension was greater during treatment with atenolol compared with propranolol, and with the exception of the sixth-hourly reading, these differences were statistically significant, whether or not allowance was made for the slightly different

<table>
<thead>
<tr>
<th>Patient</th>
<th>Sex</th>
<th>Age (years)</th>
<th>Diagnosis</th>
<th>Previous treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Male</td>
<td>66</td>
<td>Open-angle glaucoma</td>
<td>Pilocarpine</td>
</tr>
<tr>
<td>2</td>
<td>Male</td>
<td>65</td>
<td>Chronic closed-angle glaucoma</td>
<td>Peripheral iridectomy pilocarpine</td>
</tr>
<tr>
<td>3</td>
<td>Female</td>
<td>48</td>
<td>Open-angle glaucoma</td>
<td>Pilocarpine di-chlorophenamide</td>
</tr>
<tr>
<td>4</td>
<td>Female</td>
<td>70</td>
<td>Open-angle glaucoma</td>
<td>Pilocarpine</td>
</tr>
<tr>
<td>5</td>
<td>Male</td>
<td>62</td>
<td>Open-angle glaucoma (aphakic)</td>
<td>Cycloplasty pilocarpine</td>
</tr>
<tr>
<td>6</td>
<td>Male</td>
<td>52</td>
<td>Chronic closed-angle glaucoma</td>
<td>Sector iridectomy pilocarpine</td>
</tr>
<tr>
<td>7</td>
<td>Male</td>
<td>62</td>
<td>Ocular hypertension</td>
<td>Nil</td>
</tr>
<tr>
<td>8</td>
<td>Male</td>
<td>62</td>
<td>Open-angle glaucoma</td>
<td>Trichophane pilocarpine adrenaline</td>
</tr>
<tr>
<td>9</td>
<td>Male</td>
<td>67</td>
<td>Chronic closed-angle glaucoma</td>
<td>Iris inclusion</td>
</tr>
<tr>
<td>10</td>
<td>Female</td>
<td>68</td>
<td>Open-angle glaucoma</td>
<td>Pilocarpine</td>
</tr>
</tbody>
</table>

Address for reprints: Dr M. J. Macdonald, The Eye Pavilion, Chalmers Street, Edinburgh EH3 9HA
mean starting pressures before the drops were given (Table II).

BLOOD PRESSURE AND PULSE RATE

There was no reduction in diastolic blood pressure after either drug but there were significant falls in systolic pressure 2, 4, 5, and 6 hours after propranolol and three hours after atenolol. Two hours after treatment by both drugs there was a significant reduction in pulse rate. This fall was greater with propranolol but the difference was not statistically significant.

Discussion

Two papers have shown the efficacy of systemic atenolol in reducing ocular tension after a single dose (Elliot and others, 1975), and during a period of eight days (Wettrell and Pandolfi, 1975) which confirms that β-adrenergic blockade or, more specifically, β_1 blockade, can produce a net effect of reduction in intraocular pressure. These observations suggest that the membrane-stabilizing effect of propranolol is of negligible importance in lowering intraocular pressure because atenolol 50 mg is more potent than 40 mg propranolol in glaucomatous eyes. This conclusion is supported because Wettrell and Pandolfi (1975) found no significant difference in the ocular hypotensive effect on normal eyes of these two drugs which they gave in the above doses twice daily for eight days. This conclusion was predictable from the much greater efficacy of racemic propranolol (that is, a mixture of the dextro- and laevo-rotary form) than dextro-propranolol since the former has 60 times the β-blocking potency of the latter but the same effect on membrane stability (Vale and Phillips, 1970).

We have no satisfactory explanation for this unexpected effect on intraocular pressure of β-blockers which has been discussed at some length...
in the papers already mentioned. It would be biologically consistent if adrenergic stimulation increased outflow commensurately with increased inflow to maintain a steady state. Route of administration may therefore be important—local application affecting outflow and systemic application inflow. Although we suspect that β-blockers given systemically reduce production of aqueous humour, the efficacy of propranolol (as well as practolol) in the form of eye drops (Vale and Phillips, 1973) suggests that an improvement in outflow may also take place. It will be interesting to observe the effect of atenolol eye drops when they become available, not only for theoretical reasons but also because, if the expected fall in pressure is confirmed, a β-blocking drug suitable for local administration may become available in clinical management of glaucoma.

Summary

In a controlled double-blind cross-over trial in 10 patients comprising six with open-angle glaucoma, three with closed-angle glaucoma, and one with ocular hypertension, a single oral dose of atenolol (50 mg) was significantly more effective than propranolol (40 mg) in reducing ocular tension.

We are grateful to ICI (Pharmaceuticals) Ltd, for supplies of atenolol (Tenormin ICI) and propranolol, and to Dr A. Rushton for information and discussion.

References

M J Macdonald, P M Cullen and C I Phillips

doi: 10.1136/bjo.60.11.789

Updated information and services can be found at:
http://bjo.bmj.com/content/60/11/789

Email alerting service

These include:
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/