Intraocular gentamicin as intraoperative prophylaxis in South India eye camps

GHOLAM A. PEYMAN, M. LATHEEF SATHAR, AND DONALD R. MAY
From the Department of Ophthalmology, University of Illinois Eye and Ear Infirmary, Chicago, and the Department of Ophthalmology, Government Erskine Hospital, Madurai, South India

SUMMARY The incidence of bacterial endophthalmitis has been 3.6% after cataract extraction in the eye camps of South India from 1961–75. During this time 50,791 cases were operated using systemic and topical chloramphenicol prophylaxis.

This study evaluated the prophylactic intracameral injection of 50 µg of gentamicin in eye camp cataract extractions. Only 6 of 1,626 patients treated with intracameral gentamicin at operation developed bacterial endophthalmitis, an incidence of 0.37%.

While the incidence of endophthalmitis in the well-developed countries has been reduced to acceptable levels of 0.1 to 0.2% (Allen and Mangiaracine, 1964, 1973), the disorder is still one of the major complications after cataract extraction in the developing countries. This has been the case especially in the eye camps in South India, where large numbers of patients (up to 500 per day) are operated on. These eye camps serve the rural masses who cannot afford the expense of coming to a hospital which may be as far as 80 miles (130 km) from their village.

In the past, before the introduction of intraocular gentamicin as prophylaxis against endophthalmitis, each patient was given 250 mg of chloramphenicol by mouth 8 hours before surgery. Chloramphenicol ophthalmic drops were instilled in the eye 1 hour before surgery. Postoperatively the patients were given chloramphenicol 250 mg by mouth every 8 hours and 1% chloramphenicol eye drops were instilled at daily dressing changes.

Additional preoperative medication included 10% phenylephrine and 1% atropine eye drops 1 hour before surgery. In addition to the 250 mg of chloramphenicol 25 mg of chlorpromazine was given orally 1 hour preoperatively. Facial and retrobulbar injections of 1% lignocaine solution were given immediately preoperatively.

The surgeon's and nurse's hands were scrubbed and rinsed with an ether-soap mixture. Operating staff put on sterile gowns, which were used throughout the operating day. Gloves were not worn, all surgery being done with bare hands. The hands were rinsed between cases with sterile water and occasionally washed again with the ether-soap mixture. Surgery was done almost entirely by Graefe knife section, and the wound was closed with 1 to 3 interrupted corneoscleral sutures. Instruments were placed in boiling water for a few minutes between cases.

The patients were seen postoperatively on a daily basis by the camp ophthalmologist. Atropine 1% drops and chloramphenicol 1% drops were applied at each dressing change. The patients were discharged on the seventh postoperative day with instructions to return to the area hospital for at least 1 postoperative follow-up examination. On discharge from the camp each patient was given a pair of cataract glasses equal to their retinoscopic spherical equivalent.

On this regimen the endophthalmitis rate was 3.6%. Between 1961 and 1975 a total of 50,791 cases were operated upon in the above manner, and 1825 developed bacterial endophthalmitis (Sathar, 1976). The patients with endophthalmitis were treated with intramuscular tetracycline twice daily and oral prednisolone daily. Intraocular injections of antibiotic solutions, including chloramphenicol and gentamicin, were also initiated during the past 3 years. In our study, when intracameral injection was used, 0.2 ml of a saline solution containing 50 µg of gentamicin was injected into the anterior chamber of each eye immediately after placement of the corneoscleral sutures. As in the previous eye camps, the surgeons were attending and house staff ophthalmologists from the Government Erskine Hospital, Madurai. No changes were made

Address for reprints: Donald R. May, MD, 1855 W. Taylor Street, Chicago, Illinois 60612, USA
Intraocular gentamicin as intraoperative prophylaxis in South India eye camps

Table 1 Incidence of endophthalmitis and other complications among the operated cases

<table>
<thead>
<tr>
<th>Camp no.</th>
<th>Group</th>
<th>No. of cases</th>
<th>Anterior chamber shallow</th>
<th>Cortex retained in anterior chamber</th>
<th>Endophthalmitis</th>
<th>Hyphema</th>
<th>Iris prolapse</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>219</td>
<td>6</td>
<td>11</td>
<td>6</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>369</td>
<td>16</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>146</td>
<td>5</td>
<td>8</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>195</td>
<td>19</td>
<td>12</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>302</td>
<td>6</td>
<td>9</td>
<td>2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>200</td>
<td>6</td>
<td>14</td>
<td>2</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>168</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>367</td>
<td>4</td>
<td>6</td>
<td></td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>2026</td>
<td>67</td>
<td>65</td>
<td>17</td>
<td>30</td>
<td>14</td>
</tr>
</tbody>
</table>

Results

Group 1: In camp 1 a total of 219 cataract extractions were performed. Six eyes developed postoperative endophthalmitis, an incidence of 2.9% in this camp.

Group 2: In the second camp all the female patients received intracameral gentamicin, and the male patients were treated as in Group 1. A total of 188 female patients had cataract extractions, with no cases of endophthalmitis. Five of the 181 male patients having cataract extractions developed endophthalmitis, an incidence of 2.8%.

Group 3: In camps 3 to 8 all patients received intracameral gentamicin. Among 1438 patients in this group there were 6 cases of postoperative endophthalmitis, an incidence of only 0.42%.

The combined incidence of postoperative endophthalmitis in the patients in group 3 and those treated with intraocular gentamicin in group 2 was 0.37%.

Table 1 summarises the postoperative complications in each camp including the cases of endophthalmitis. 11 cases of endophthalmitis were diagnosed in groups 2 and 3. Aspiration of 0.1 ml of vitreous was performed in each of these cases, and cultures were done using cooked meat and chocolate agar media. Each of the 11 cases was culture positive as listed in Table 2.

All the cultured organisms were sensitive to gentamicin. Each case of endophthalmitis was treated with a combination of gentamicin and dexamethasone. A total of 400 μg of gentamicin and 360 μg of dexamethasone was given by a single intravitreal injection according to our technique (May et al., 1974; Peyman et al., 1974a; Peyman et al., 1974b). The ocular media cleared in 9 of the 11 cases after this single treatment. The other 2 eyes did not clear completely, and eventually progressed to phthisis bulbi.

Discussion

The rate of endophthalmitis in the South Indian eye camps has been 3.6% over the past 14 years. This is comparable to the 2.9% incidence of endophthalmitis in those patients in our series not treated with intracameral gentamicin. This high incidence is attributable to the inability to achieve asepsis in the temporary operating rooms prepared in the village eye camps. Even with the best of efforts flies are present and sterile technique cannot be achieved.

Of 1626 patients receiving prophylactic intracocular gentamicin at operation only 6 developed bacterial endophthalmitis, an incidence of 0.37%. This study shows that a substantial decrease in the incidence of endophthalmitis has been achieved with

Table 2 Results of vitreous aspirate culture

<table>
<thead>
<tr>
<th>Organism cultured</th>
<th>No. of cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staphylococcus albus</td>
<td>3</td>
</tr>
<tr>
<td>Coliform and S. aureus</td>
<td>1</td>
</tr>
<tr>
<td>S. aureus</td>
<td>2</td>
</tr>
<tr>
<td>Beta-haemolytic streptococcus</td>
<td>1</td>
</tr>
<tr>
<td>S. pyogenes</td>
<td>1</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
</tr>
</tbody>
</table>
this method. We believe that the routine intraocular injection of small quantities of gentamicin, i.e., 50 μg, could greatly reduce the incidence of postoperative endophthalmitis in many parts of the world where surgical asepsis is a problem.

References

Intraocular gentamicin as intraoperative prophylaxis in South India eye camps.
G A Peyman, M L Sathar and D R May

doi: 10.1136/bjo.61.4.260

Updated information and services can be found at:
http://bjo.bmj.com/content/61/4/260

Email alerting service
These include:
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/