Influence of untreated chronic plastic iridocyclitis on intraocular pressure in leprosy patients

F. BRANDT,1 O. K. MALLA,2 AND J. G. F. ANTEN3

From the 1Eye Clinic, University of Munich, West Germany; the 2Nepal Eye Hospital, Kathmandu; and the 3Ministry of Health, Kathmandu, Nepal

SUMMARY The intraocular pressures of a total of 1015 eyes of leprosy patients who never had ophthalmological care or local eye treatment were measured. The patients were categorised according to the type of leprosy they had and the eyes were categorised as without or with chronic plastic iridocyclitis. In patients with the tuberculoid and lepromatous types of leprosy the intraocular pressure was significantly lower in eyes with chronic plastic iridocyclitis than in unaffected eyes. It has been shown that chronic plastic iridocyclitis which remains untreated for many years results in significantly lower intraocular pressure.

In leprosy patients chronic plastic iridocyclitis leads to the gradual failure of the ocular physiology, resulting in complicated cataract and phthisis bulbi. But not all eyes become blind. Most of them still have visual function after many years of suffering from chronic plastic iridocyclitis. Since there is no report dealing with the influence of untreated chronic plastic iridocyclitis on the intraocular pressure, it is the purpose of this paper to describe the natural course of the intraocular pressure during that disease process.

Material and methods

The intraocular pressures of the 460 patients in the Khokana Leprosarium2 were included as well as those of 71 outpatients in the Nepal Eye Hospital, Kathmandu. The ages and the duration of the disease in these patients are shown in Table 1.

Correspondence to Dr F. Brandt, Augenklinik der Universität München, Mathildenstrasse 8, 8000 München 2, West Germany.

Table 1 Distribution of patients with different types of leprosy according to their age and duration of disease

<table>
<thead>
<tr>
<th>Type</th>
<th>Age (years)</th>
<th></th>
<th></th>
<th>Duration of disease (years)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><20</td>
<td>20—40</td>
<td>>40</td>
<td>Total</td>
<td><10</td>
<td>10—20</td>
<td>>20</td>
</tr>
<tr>
<td>Tuberculoid</td>
<td>2</td>
<td>87</td>
<td>212</td>
<td>301</td>
<td>14</td>
<td>91</td>
<td>196</td>
</tr>
<tr>
<td>Lepromatous</td>
<td>5</td>
<td>54</td>
<td>161</td>
<td>220</td>
<td>15</td>
<td>67</td>
<td>138</td>
</tr>
<tr>
<td>Total</td>
<td>7</td>
<td>141</td>
<td>373</td>
<td>521</td>
<td>29</td>
<td>158</td>
<td>334</td>
</tr>
</tbody>
</table>

During the long course of the disease there was no regular medical check-up and no control whatsoever of the dispensing of the oral sulphonamide therapy. An ophthalmological examination had never been done, and local treatment had not been given before. All patients had received sulphonamide therapy for more than 10 years except for 29 patients who had suffered from leprosy for less than 10 years, and these 29 patients received therapy for longer than 5 years. Eyes with an intraocular pressure of less than 5 mmHg and those with intraocular pressure of more than 22 mmHg were not considered in this study.

Intraocular pressure was measured with a Schiötz tonometer. Because a slit-lamp was not available, all examinations had to be performed with a magnifying lens and a pocket torch. Owing to this fact, many of the discrete signs of chronic plastic iridocyclitis could not be observed. Even though chronic plastic iridocyclitis leads to the formation of posterior synechiae only after a considerable time, we have considered these synechiae to be the only criteria for the diag-
Influence of untreated chronic plastic iridocyclitis on intraocular pressure in leprosy patients

Table 2 Distribution of the intraocular pressure in the different types of leprosy in eyes without and with signs of chronic plastic iridocyclitis

<table>
<thead>
<tr>
<th>Type</th>
<th>Intraocular pressure mmHg</th>
<th>Average mmHg</th>
<th>Total number of eyes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4-5</td>
<td>6-7</td>
<td>8-9</td>
</tr>
<tr>
<td>Tuberculoid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Without CPI</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>With CPI</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Lepromatous</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Without CPI</td>
<td>0</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>With CPI</td>
<td>2</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td>2</td>
<td>8</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lepromatous</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Without CPI</td>
<td>0</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>With CPI</td>
<td>3</td>
<td>8</td>
<td>13</td>
</tr>
<tr>
<td>Total</td>
<td>3</td>
<td>13</td>
<td>23</td>
</tr>
</tbody>
</table>

*C Chronic plastic iridocyclitis.

os of 'eyes with iridocyclitis' in the present study.

Because chronic plastic iridocyclitis is known to be a relatively early complication of leprosy, it can be assumed that these patients, all of whom had suffered from the disease for many years, had probably also had manifest chronic plastic iridocyclitis for many years.

Results

There was no significant difference between the patients in the two types of leprosy in age or duration of disease.

The distribution of intraocular pressures in the different types of leprosy is shown in Table 2. Of 592 eyes examined with the tuberculoid type 30 (5.1%) showed signs of iridocyclitis. The mean intraocular pressure was 15.5 mmHg in eyes without iridocyclitis and 13.5 mmHg in eyes with iridocyclitis. This difference is significant (p <0.001). Our results showed that aqueous humour production was significantly diminished. Our results showed a significant decrease in mean intraocular pressure in eyes with iridocyclitis in both types of leprosy as opposed to eyes without chronic plastic iridocyclitis.

The mean intraocular pressure of the 562 eyes of the lepromatous patients without iridocyclitis was 14.8 mmHg and 13.4 mmHg in eyes with iridocyclitis. This difference is significant (p <0.001).

The mean intraocular pressure of the 562 eyes of the lepromatous patients without iridocyclitis was 15.5 mmHg in contrast to 14.8 mmHg in the 318 eyes of the lepromatous patients without iridocyclitis. This difference is significant (p <0.001).

Of the 880 eyes examined in both types of leprosy which showed no signs of iridocyclitis the intraocular pressure was 15.2 mmHg compared with 13.4 mmHg in the 135 eyes with iridocyclitis. This difference is significant (p <0.001).

The average in intraocular pressures in the total of 592 eyes of the tuberculoid type patients was 15.4 mmHg compared with an average of 14.4 mmHg in the 423 lepromatous type patients. This difference is significant (p <0.001).

A difference of intraocular pressures between both eyes of more than 5 mmHg was found in 11 patients (3.6%) in the tuberculoid group and in 14 patients (6.5%) in the lepromatous type.

Discussion

According to the results of Slem⁴ a tonographic examination of 49 leprosy patients with reduced intraocular pressure showed a clearly diminished drainage in 25% of his patients. (No information as to the type of leprosy or further information on the intraocular condition was given). He also reported that aqueous humour production was significantly diminished. Our results showed a significant decrease in mean intraocular pressure in eyes with iridocyclitis in both types of leprosy as opposed to eyes without chronic plastic iridocyclitis.

If the reduced pressure is primarily caused by reduced production of aqueous humour, then secondary changes in the trabecular meshwork⁵ lead to diminished drainage. It is therefore not surprising that in eyes with normal or low intraocular pressure Slem⁴ found an outflow facility otherwise typically found in eyes with glaucomatous changes of the trabecular meshwork.

The reason that reports of primary glaucoma in leprosy⁷ are rare is probably that obliterator changes in the ciliary body itself⁶ counteract, through diminished production of the aqueous, primary glaucomatous changes of the trabecular meshwork. On the other hand, when iridocyclitis is present, the excretion of protein leads to an increased viscosity of the aqueous humour, and the protein acts as an additional barrier in the trabecular meshwork.⁸ Obviously the aqueous-reducing components outweigh in most cases the diminished drainage.
filtration, so that secondary glaucoma rarely results. When it does occur, it is usually a sign of an acute diffuse iridocyclitis, as it appears in erythema nodosum lepromatum.

Because we were able to measure intraocular pressures only once, we cannot state with certainty that the difference of more than 5 mmHg between both eyes is a pathological finding. However, the prevalence of this difference in both types of leprosy indicates that chronic plastic iridocyclitis fundamentally influences intraocular pressure.

We explain the significantly lower intraocular pressure in eyes 'without iridocyclitis' in the lepromatous type than in the tuberculoid type by the fact that our examinations were done without a slit-lamp. Therefore all discrete microscopical signs (such as Tyndall's phenomenon or cells in the anterior chamber) may not have been detected. In many eyes, especially of lepromatous patients, signs of a chronic plastic iridocyclitis can be visualised only by slit-lamp examination.

We thank Dr R. Adamczyk of the Eye Clinic of the University of Munich, and Mrs G. Schubert of the Institute for Medical Statistics and Biomathematics of the Ludwig-Maximilians-University of Munich for their friendly assistance in the evaluation of the data included in our results.

References

Influence of untreated chronic plastic iridocyclitis on intraocular pressure in leprous patients.
F Brandt, O K Malla and J G Anten

doi: 10.1136/bjo.65.4.240

Updated information and services can be found at:
http://bjo.bmj.com/content/65/4/240

These include:

Email alerting service
Receive free email alerts when new articles cite this article.
Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/