Indirect funduscopy in a gas filled eye: an observation

V T THALLER
From Moorfields Eye Hospital, City Road, London EC1V 2PD

SUMMARY It has been observed that a vitrectomised, gas filled, phakic eye can produce a real, inverted, aerial image of the fundus anterior to the cornea. The optics of this phenomenon are discussed.

Indirect funduscopy requires paraxial illumination and a condensing lens positioned at an appropriate distance in front of the eye to produce a real inverted aerial image of the fundus (Fig. 1).

The author has observed that a phakic eye filled with gas after vitrectomy can produce such an 'indirect' image without the use of a discrete condensing lens. In this situation the cornea/aqueous/crystalline lens complex together function as a condensing lens (Fig. 2). The image produced has all the properties of an 'indirect' image, being real and inverted, and is formed anteriorly to the cornea. It may be viewed through the operating microscope or slit-lamp microscope by focusing the instrument anteriorly from the cornea on to the image plane. The image may also be photographed by an anterior segment camera (Fig. 3).
Optics

The total refractive power of an eye has been calculated by Helmholtz and Gullstrand\(^1\) to be about +60 dioptres (+58-64 dioptres). When the vitreous cavity is filled with air, the posterior lens surface/air interface becomes strongly refractive. Landers et al.\(^2\) used Gullstrand's model to calculate the refractive power of such a gas filled phakic eye and arrived at a value of approximately +100 dioptres (+102 dioptres). The cornea/aqueous/lens complex therefore acts as a +100-dioptre condensing lens forming an image \(I\) at a distance \(V\) from its nodal point \(N_1\) (Fig. 4). The position of this image is related to the distance \(U\) between the retina (O) and nodal point \(N_2\) by equation (1):

\[
D = \frac{1}{u} + \frac{1}{v} \tag{1}
\]

where \(D\) is the dioptic power of the refracting complex. From equation (1) it can be established that for the image to be formed at infinity (\(\frac{1}{v} = 0\)) the object distance must be 10 mm:

\[
D = \frac{1}{u}. \quad U = \frac{1}{u} = \frac{1}{100} = 0.01 \text{ m.}
\]

The value of \(U\) in the emmetropic eye is nearer 20 mm. In this instance the image is formed at 20 mm:

\[
V = \frac{1}{(D - \frac{1}{u})} = \frac{1}{100 - 50} = 0.02 \text{ m.}
\]

It follows that in myopic eyes which have a higher value of \(U\) the image will be correspondingly closer to \(F_1\).

The clinical usefulness of this phenomenon of 'auto indirect ophthalmoscopy' of a gas filled eye remains to be established.

References

Accepted for publication 27 June 1985.
Indirect funduscopy in a gas filled eye: an observation.

V T Thaller

doi: 10.1136/bjo.70.2.155

Updated information and services can be found at:
http://bjo.bmj.com/content/70/2/155

Email alerting service

These include:

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/