Chronic alcoholism and microbial keratitis*

L DAVID ORMERO, DEBORAH S GOMEZ, DAVID J SCHANZLIN,
AND RONALD E SMITH

From the Department of Ophthalmology, University of Southern California, and the Estelle Doheny Eye Foundation, Los Angeles, USA.

SUMMARY In a series of 227 consecutive, non-referred patients with microbial keratitis an analysis of the accumulated hospital records showed that one-third were associated with chronic alcoholism. The diagnosis of alcoholism was usually unsuspected on admission to hospital. The microbial pathogenesis in these patients was distinctive; coagulase-negative staphylococci, α- and β-streptococci, moraxellae, enteric Gram-negative bacilli, and polymicrobial infections were unusually prominent. Pseudomonas aeruginosa was uncommon. Trauma, exposure, bullous keratopathy, other external ocular diseases, and self-neglect were the major recognised predisposing causes. The nutritional, toxic, and immunological sequelae of alcoholism may also have been contributory. Ophthalmologists should be alert to the diagnosis of chronic alcoholism in their patients. Chronic alcoholism may be an important and undetected risk factor for microbial keratitis.

It has been suspected that the pathogenesis and pattern of microbial keratitis in the chronic alcoholic may differ from that usually described and defined principally by an uncommonly high prevalence of moraxella infection. However, no formal study has been undertaken. In one hospital based series of patients with a high rate of chronic alcoholism 45% of cases of microbial keratitis from 1965 to 1970 were caused by moraxellae. Improvements in nutrition and sanitation were cited as possible explanations for the subsequent decline in moraxella prevalence at the same institution to 5% over the period 1971–4. There may also have been important demographic factors, including alterations in the catchment area of the hospital, to explain this change.

An accepted definition of chronic alcoholism is excessive, persistent drinking that interferes with the person's health, interpersonal relationships, legal position, or means of livelihood. The diagnosis is often overlooked by healthcare professionals and should be specifically sought, particularly in high-risk groups. In hospital based populations chronic alcoholism has been reported in 8 to 18% of US private hospital patients, with even higher levels in metropolitan public hospitals in the USA and UK. The rates in female inpatients have been reported to be one-third to two-thirds those of men. An estimated 10% of the United States adult population is believed to have a drinking problem. Published series of patients with microbial keratitis have not recorded many alcoholics. As Los Angeles County has one of the higher rates of alcoholism in the United States we carefully studied the prevalence of chronic alcoholism in our retrospective cases of microbial keratitis so as to evaluate the pattern of ocular disease and gauge the particular problems of management.

Subjects and methods

A total of 227 consecutive patients with microbial keratitis were admitted to the Los Angeles County-University of Southern California Medical Centre (LAC-USC) over the 11-year period, 1 July, 1972 to 30 June, 1983. LAC/USC is a non-referral, primary care facility. The microbial aetiology of the corneal infections was investigated by standard techniques. Bacterial keratitis was defined as an inflammatory infiltrate and ulceration of the corneal stroma, associated with an epithelial defect, from which one or more microbial species were cultured;
all but trace isolates were reported as positive. Ophthalmological, microbiological, and medical data were recorded, according to a detailed protocol, by reviewing the accumulated, hospital inpatient and outpatient charts from all specialties. As LAC-USC is the main primary-care institution for Los Angeles County, lifetime medical histories were frequently available.

Seventy-two individuals (32%) were diagnosed as chronic alcoholics, though the diagnosis was usually unsuspected during the ophthalmic admission. Admissions to the inpatient detoxification service were recorded in many patients’ charts. In other instances the diagnosis had been based on a combination of the social and behavioural history, clinical signs, and biochemical findings, or the finding of major medical complications of chronic alcoholism.

Results

The racial distribution of the alcoholic group (72 patients) was: 54% white; 28% black; 12% hispanic. It contrasts with that of the non-alcoholic patients (155 patients): 27% white; 22% black; 40% hispanic. Sixty-six patients were male and there were six females. Forty-four left and 28 right eyes were involved. Ulcers were small (<2 mm) in five cases, moderate (2–6 mm) in 50, and large (>6 mm), in 17 cases. There was more than a six-fold difference in prevalence between the months of highest (January) and lowest (February and August) incidence.

To investigate the nature of the alcoholic group we investigated the lifetime incidence of several major medical complications of chronic alcoholism; the results are shown in Table 1. Two patients also had a history of narcotic drug abuse, four patients suffered from a severe psychotic or major affective disorder, and four patients were diabetic. Trauma was implicated as a factor in 23 patients (32%) and local ocular disease in 33 (46%). One-fifth had either bullous keratopathy or ocular exposure. It is noteworthy that no predisposing factors were recorded in 25 patients (35%).

Table 1	Recorded lifetime incidence of major medical complications of chronic alcoholism	
Percentage	**Number**	
Itinerary	19	14
Delirium tremens	22	16
Seizure disorders	18	13
Acute and chronic brain syndromes*	15	11
Hepatic cirrhosis (biopsy-proved)	15	11
Known death from hepatic complications	10	7
Chronic pancreatitis	4	3

*Includes Wernicke's encephalopathy, alcoholic dementia, cerebellar degeneration, and Korsakoff's psychosis.

Fifty-nine (82%) of the 72 alcoholic patients were culture-positive, and 32% of these cultures showed polymicrobial infection. The remarkable features of the microbiological spectrum (Table 2) were the higher than normal prevalences of coagulase-negative staphylococci, α- and β-haemolytic streptococci, *Moraxella* spp., and enteric Gram-negative bacilli. *Pseudomonas aeruginosa* was surprisingly uncommon and found in only four patients (6%). Fungi were also uncommon.

Table 3 compares the rates of complications and operations between the alcoholic and non-alcoholic patients. There was a tendency for more severe disease in chronic alcoholics. Self-neglect was probably an important factor. Whereas 52% of the non-alcoholic group presented to an ophthalmologist within 72 hours of developing symptoms, only 21% of the chronic alcoholics had reported by this time. In fact 42% of the alcoholics did not seek medical attention for at least one week. It was notable that a significant minority complained of little or no pain.

Table 2	Microbial causation of corneal ulcers in a population of chronic alcoholics	
Percentage of Patients	**Numbers†**	
Gram-positive cocci	**Gram-negative bacilli**	
Coagulase-negative staphylococci	28	20(4)
Staphylococcus aureus	15	11(7)
Streptococcus pneumoniae	13	9(4)
β-haemolytic streptococci	11	8(3)
α-haemolytic streptococci	7	5(5)
γ-haemolytic streptococci	1	1(1)
Microaerophilic streptococcus	1	1(0)
Gram-positive bacilli	**Gram-negative bacilli**	
Bacillus subtilis	1	1(0)
Clostridium spp.	1	1(0)
Gram-negative cocci/cocobacilli	**Pseudomonas spp.**	
Moraxella spp.	13	9(5)
Brachanella catarrhalis	1	1(0)
Gram-negative bacilli	**Fungi**	
Proteus spp.	7	5(2)
Pseudomonas aeruginosa	6	4(1)
Enterobacter spp.	4	3(3)
Citrobacter spp.	3	2(0)
Klebsiella spp.	1	1(1)
Other *Pseudomonas* spp.	1	1(0)
Aeromonas spp.	1	1(1)
Haemophilus influenzae	1	1(1)

Fungi |

Candida albicans | 1 | 1(1) |
Penicillium spp. | 1 | 1(1) |
Cladosporium spp. | 1 | 1(1) |
Negative cultures | 18 | |
Polymicrobial cultures | 32 | |

*†Figures in parentheses indicate the number of polymicrobial infections.
Chronic alcoholism and microbial keratitis

Table 3 Comparisons of rates of complications and operations in microbial keratitis in chronic alcoholic and non-alcoholic patients

<table>
<thead>
<tr>
<th></th>
<th>Chronic alcoholic group (72)</th>
<th>Non-alcoholic group (134)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypopyon</td>
<td>33%</td>
<td>33%</td>
</tr>
<tr>
<td>Descemetocoele/perforation</td>
<td>22%</td>
<td>15%</td>
</tr>
<tr>
<td>Perforation occurring >3 days</td>
<td>8%</td>
<td>4%</td>
</tr>
<tr>
<td>after admission</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penetrating/lamellar keratoplasty</td>
<td>18%</td>
<td>12%</td>
</tr>
<tr>
<td>Glue/soft contact lens</td>
<td>11%</td>
<td>5%</td>
</tr>
<tr>
<td>Enucleation/evisceration</td>
<td>6%</td>
<td>6%</td>
</tr>
<tr>
<td>Soft contact lens/epithelial failure</td>
<td>4%</td>
<td>4%</td>
</tr>
<tr>
<td>Mean admission time in days</td>
<td>17.6 (±12.7)</td>
<td>14.4 (±10.9)</td>
</tr>
</tbody>
</table>

Discussion

Chronic alcoholism was the most prevalent association identified in 227 consecutive patients admitted to LAC-USC with microbial keratitis. As these chronic alcohols were admitted for ophthalmological treatment and not for alcoholism, it is remarkable that the available lifetime incidence figures of alcohol-related physical diseases were closely comparable to data from metropolitan alcoholic units.26-24 This lends support to the methodology but, more importantly, suggests that chronic alcoholism may be a major unsuspected risk factor for microbial keratitis. The alcoholism had usually been overlooked during the ophthalmic admission, as it may have been in other series of microbial keratitis patients.

The pathogenesis of microbial keratitis in chronic alcohols is undoubtedly multifactorial (Table 4). A history of trauma was obtained in one-third of the cases. That trauma played a significant part in this study was also suggested by the predominance of keratitis in left eyes (interpersonal trauma is more usually inflicted with the right hand) and perhaps by the high prevalence of keratitis in the post-Christmas period. Amnesia, mental illness, and deliberate evasion may contribute to an underassessment of the role of trauma in chronic alcohols, and may account for many of the patients in whom no predisposing factor was recorded (35%). A primary predisposition for chronic alcoholism per se cannot be excluded.

Self-neglect is emphasised by the duration of symptoms at presentation. Coexisting external ocular disease was important, and bullous keratopathy or ocular exposure were particularly common. The relative contribution of poor hygiene was impossible to quantify. An altered ocular microbial flora has also been reported to occur in alcohols,3 though we have no contributory data.

There is a well documented increase in several kinds of systemic infectious diseases in chronic alcohols, an associated increase in duration and severity of infection, and an increased mortality.25 The causation is complex. Acute, reversible alcohol-induced lymphoid toxicity interrelates with protein-calorie, vitamin, and mineral malnutrition, as well as the chronic immunosuppressive effects of both chronic liver disease and chronic alcoholism per se.23,25 The immunological deficits that may sometimes be important contributors to this increased risk of infection have recently been reviewed by Adams and Jordan.25

Such factors presumably had some role in the distinctive spectrum of microbial keratitis seen in our alcoholic patients, compared with those in the non-alcoholic group (unpublished data) and in other series.1,17,26-27 Infections involving the usual causative organisms (Staph. aureus, Str. pneumoniae, and Pseudomonas aeruginosa) accounted for only 30% of the total. There was an increased prevalence of infections caused by such relatively uncommon corneal pathogens as Moraxella, α- and β-streptococci, and the enteric Gram-negative bacilli. This pattern of infection by organisms with usually low virulence for the cornea was not found in our non-alcoholic patients. It provides indirect evidence to support a significant pathogenetic role for the coagulase-negative staphylococci,29 which were the most commonly isolated organisms. The pneumococcus was also more prevalent than in recent series.1,17,26-27

It was not possible to reanalyse the microbiological data by the more stringent criteria that have been recently suggested to increase the discrimination from tear film contamination.30 However, even if the usual conjunctival commensal organisms were to be disregarded (coagulase-negative staphylococci, Bacillus and Branhamella spp.), we believe unjustifiably, 18% of the cases must still be considered polymicrobial, a genuinely high prevalence.30

The management of microbial keratitis associated with chronic alcoholism presents a formidable challenge, particularly in the decompensated alcoholic. The alcohol withdrawal syndromes, nutritional deficiencies, and medical complications must be treated urgently and expectantly.3,21-23 The alcoholic patient’s co-operation is often difficult to achieve. A sympathetic understanding of the psychopathology of chronic alcoholism, prodigious

Table 4 Aetiology of microbial keratitis in chronic alcohols

<table>
<thead>
<tr>
<th>1. Trauma</th>
<th>5. Altered conjunctival flora</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Exposure during inebriation</td>
<td>6. Neglect</td>
</tr>
<tr>
<td>3. External ocular disease</td>
<td>7. Malnutrition</td>
</tr>
<tr>
<td>4. Poor hygiene</td>
<td>8. Immunosuppression</td>
</tr>
</tbody>
</table>
patience, and abundant time is necessary to gain the co-operation of many patients before optimal anti-
biotic therapy can be carried out. If frequent high-
dose, topical antibiotic therapy is not psychologically
tolerated, we recommend that therapy be centred on
regular subconjunctival antibiotic injections, per-
formed through a 0·25 ml subconjunctival bleb of 2% lignocaine, after prior anaesthesia of the conjunctiva
with topical 4% cocaine. This is supplemented with
as much topical treatment as can be given.

There were increased rates of complications and
operations among the chronic alcoholics. The use of
isobutyl cyanoacrylate tissue glue for established or
incipient corneal perforation is particularly valuable
in this situation. As follow-up in decompensated
alcoholics is frequently non-existent, we suggest that
keratoplasty should generally be performed as a last
resort and principally for tectonic reasons, unless
there are favourable psychosocial factors or the
patient is uniconular.

A diagnosis of chronic alcoholism may be easily
overlooked. Alcoholic who request treatment at
general hospitals are prone to minimise their
reports of alcohol consumption and deny their
alcohol dependence. A recent study at a large
medical centre showed that most of the physicians
and nurses gave only cursory attention to patients'
alcohol histories.

When alcoholism was perceived, physicians
frequently still neglected their patients' alcohol
dependency. There is recent evidence from a study in Edinburgh that even a single session of
counselling about alcohol abuse (during a medical
admission) can significantly improve the alcoholic
outcome at one year. It should be the goal of all
physicians actively to solicit their chronic alcoholic
patients to take appropriate treatment before
irreversible physical or psychological problems
develop.

An alcohol history should be taken from every
patient with microbial keratitis. A good indication
can be gained by asking what the patient has drunk in
the previous week. If the answer is nothing, the
patient is unlikely to be an active alcoholic. Several
brief alcoholism screening questionnaires have been
devised. Alternatively, discriminant questions can
be asked independently concerning the quantity and
frequency of drinking, domestic arguments over
drinking, possible fights while drinking, feelings
about excessive drinking, morning drinking, and
binges, and whether there have been work difficul-
ties, loss of friends, arrests, or financial difficulties
resulting from alcohol abuse. An interview with a
spouse or close contact can also be revealing.

It is important for ophthalmologists to address the
problem of chronic alcoholism in their patients and
assume responsibility for its identification. Our data
suggest that microbial keratitis patients are a high-
risk group for chronic alcoholism. Alcoholic screen-
ing can be easily incorporated into ophthalmic
history taking, particularly in cases of microbial
keratitis, ocular trauma, and optic neuropathy.
Preventive care of the external eye would also
probably reduce the toll of microbial keratitis in the
chronic alcoholic.

This work was supported in part by a grant from Research for the
Prevention of Blindness (Dr Smith).

References

1. Asbell P, Stenson R. Ulcerative keratitis. Survey of 30 years

2. Fedukowicz H, Horwich H. The Gram-negative diplobacillus in

3. Baum J, Fedukowicz HB, Jordan A. A survey of moraxella

4. Stern GA. Moraxella corneal ulcers: poor response to medical

6. Pokorny AD. How to diagnose the alcoholic. In: Messitha FS,
Tyner GS, eds. Alcoholism: a perspective. Westbury, NY: PJD

7. Kearney TR, Bonime HB, Cassimatis G. The impact of alcohol-
ism on a community general hospital. Community Ment Health J

8. Moore RA. The prevalence of alcoholism in a community

9. Barchhu R, Stewart MA, Guze SB. The prevalence of alcohol-
ism among general hospital ward patients. Am J Psychiatry 1968;

41: 583–6.

11. Lloyd G, Chicc J, Crombie E. Screening for problem drinkers
among medical inpatients. Drug Alcohol Depend 1982; 10:
355–9.

12. Lockhart SP, Carter YH, Staffen AM, Pang KK, McLoughlin J,
Baron JH. Detecting alcohol consumption as a cause of emergen-
ty general medical admissions. J R Soc Med 1986; 79:
132–6.

drinking and alcoholism in the general population: an overview
of epidemiological studies. Alcohol Hlth Res World 1982–3; 7:
10–21.

274–8.

15. Keller M, Elron V. Alcoholism in the big cities of the United

16. Janis JM, Walker A. An approach to monitoring the health status
of Los Angeles County residents. Los Angeles: UCLA, 1983:
149–64.

17. Jones DB. Initial therapy of suspected microbial corneal ulcers.
II. Specific antibiotic therapy based on corneal smears. Surv

19. Jones DB, Liesegang TJ, Robinson NE. Laboratory diagnosis of
Society for Microbiology, 1981.

Physical disease in alcoholism. Initial survey of 1000 patients.
Chronic alcoholism and microbial keratitis

Accepted for publication 16 December 1986.
Chronic alcoholism and microbial keratitis.

L. D. Ormerod, D. S. Gomez, D. J. Schanzlin and R. E. Smith

doi: 10.1136/bjo.72.2.155

Updated information and services can be found at:
http://bjo.bmj.com/content/72/2/155

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/