Cryptococcal meningitis presenting as uveitis

S P STONE,1 J BENDIG,2 J HAKIM,3 P E KINNEAR,3 B S AZADIAN,2 AND F CLIFFORD-ROSE1

1From the Departments of 1Neurology, 2Microbiology, and 3Ophthalmology, Charing Cross Hospital, London W6

SUMMARY A patient presented with a posterior uveitis. An inferior plaque of retinal exudation was seen. Full investigation failed to establish a cause until six weeks later, when cryptococcal meningitis developed. The patient was immunocompetent. Exudation in relation to retinal vessels is unusual in idiopathic posterior uveitis, and cryptococcosis should be considered in the differential. Diagnosis is by lumbar puncture or vitreous aspiration.

Cryptococcosis is a well recognised infection of immunocompromised patients. It usually presents with meningitis. Uveitis is a secondary complication. We report an immunocompetent patient who presented with posterior uveitis of unknown cause six weeks prior to developing cryptococcal meningitis. A localised exudate in relation to retinal vessels is unusual in idiopathic posterior uveitis and should alert the clinician to the possibility of cryptococcosis.

Case report

A 39-year-old, previously well, Tanzanian Indian, who had not left the UK for 12 years, presented to his local hospital with disturbance of vision in his right eye. Best corrected visual acuities were 6/18 OD, 6/6 OS. Refraction was −0.25 (both eyes). He had a uveitis and chorioretinitis which was treated with topical steroid (dexamethasone) but did not improve. He consulted an ophthalmologist directly, who confirmed posterior uveitis, noted a focal plaque, and investigated fully. After four weeks the patient presented to another hospital with right eye pain and mild biparietal headache. Visual acuities were 6/18 OD, 6/5 OS. Refraction was −0.25 both eyes. Anterior and posterior uveitis was present in the right eye with macular oedema, vitreous cells and retinal exudate (an inferior plaque). The left eye was normal. There was no evidence elsewhere of sarcoidosis, tuberculosis, inflammatory bowel disease, or seronegative arthritis. The erythrocyte sedimentation rate was 51 mm in the first hour, but chest x-ray and full blood count were normal; syphilis serology, autoantibodies, acute and convalescent serology (toxoplasma, cytomegalovirus, herpes simplex, and Epstein-Barr) were negative. On this basis idiopathic posterior uveitis was diagnosed. Treatment with 60 mg prednisolone daily was begun. Vision improved over five days to 6/9 OD, with resolution of macular oedema.

Correspondence to Dr S P Stone, Department of Neurology, St Bartholomews Hospital, West Smithfield, London EC1A 7BE.
Two weeks later he presented to another hospital complaining of three days' violent headache, photophobia, and vomiting. There was a pyrexia of 39-5°C without meningism or focal neurological signs. The right vitreous was cloudy. Retinal exudate was seen (Figure I). Tuberculous meningitis was suspected because he was Indian and on steroids. He was referred to the Regional Neurosciences Centre at Charing Cross Hospital. A CT scan showed meningeal enhancement (Figure II). Examination of the cerebrospinal fluid (CSF) revealed white cells 396/m\(^3\) (70% lymphocytes, raised protein (0.72 g/l, normal 0.1-0.5 g/l) and low glucose (1.4 mmol/l, normal 2.8-4.7 mmol/l).

Gram stain and Indian ink (Figure III) showed moderate numbers of encapsulated yeasts. Cryptococcus neoformans was isolated on blood, chocolate, and Sabouraud's agar after 48 hours' incubation at 37°C and subsequently confirmed as serotype A by the Mycological Reference Laboratory. The latex agglutination test for C. neoformans capsular antigen was positive with a titre of 200 in the CSF and 64 in the serum.

Chest x-ray, midstream urine, full blood count (lymphocytes 2.1×10\(^9\)/l), glucose, and liver function tests were normal. There was no clinical evidence of malignant disease or reticulosis and he was not at risk of AIDS. HTLV-III antibody and hepatitis B antigen were negative. The Th/Ts ratio was normal. Direct questioning revealed that he was regularly exposed to large amounts of pigeon faeces (the main environmental source of Cryptococcus neoformans) when he rearranged the electrical wiring on the roof of his local Hindu temple. Culture of faeces from the roof grew a Cryptococcus species, but not C. neoformans.

He was treated with intravenous amphotericin 0.5 mg/kg and flucytosine 250 mg four times daily for six weeks. Repeat lumbar puncture at two and five weeks showed a progressive fall in the antigen titre to less than 1:2. His headache resolved, his acuity returned to 6/6, 6/5, but exudates remained when he was discharged. Three months later both CSF and ophthalmological examination were normal. He remained well six months later.

Discussion

Although human beings frequently come into contact with Cryptococcus neoformans, clinical disease is rare, but subclinical infection may be common. The main source of the organism is pigeon droppings,\(^1\) which it colonises; 0.1 g of dried pigeon droppings from a sidewalk under a New York City fire escape contained 50 million cryptococci.\(^2\) The organism is disseminated by wind currents, and in one notable
Cryptococcal meningitis presenting as uveitis

experiment conducted in the tower of a church belfry contaminated by pigeon manure was recovered from air, being carried in particles small enough to enter an alveolus. It thus enters the lung as an infectious inhalant dust and then spreads to meninges, bone, kidney, and other organs. The pulmonary and neurological manifestations are well documented, with infection of the central nervous system most commonly presenting as meningitis, but occasionally as hydrocephalus or an intracranial mass.

A third of over 100 known respiratory cases were asymptomatic, so that subclinical disease is common. There are 500–15000 estimated cases of subclinical lung disease per annum in New York City alone, and there is immunological evidence of subclinical disease in pigeon breeders as well as necropsy evidence of unsuspected cryptococcal lesions in patients dying of unrelated disease. Subclinical or chronic meningitis can culminate in hydrocephalus or give rise to transient neurological symptoms.

The AIDS outbreak has focused Western attention on cryptococcosis as a disease of the immunosuppressed. In the UK in 1985 28 out of 31 cases were immunocompromised, nine by AIDS (Mackenzie D, personal communication). In the Orient, however, 86–89% are immunocompetent, as shown by series from Singapore, Malaysia, South Africa (blacks), and Australia (aborigines). The most recent of these reports counsels a high index of suspicion in otherwise healthy orientals. It has been suggested that these apparently immunocompetent individuals may be 'genetic hyporesponders' on the basis of immunological studies showing that surviving cryptococcosis patients have a selective failure of lymphocyte responses to C. neoformans and a long-lasting inability to produce antibodies to the organism.

Recent exposure to a large amount of pigeon excreta may predispose to infection, and our patient recalls kicking a pile of droppings into the air and noting the offensive odour a few weeks prior to onset of his ocular disease. Despite circumstantial evidence only two cases have been reported of the isolation of the organism from the suspected source. In one of these a doctor who contracted cryptococcal meningitis had spent much time in a hospital library near an air conditioner laden with pigeon droppings, culture of which yielded a heavy growth of C. neoformans. Recent work suggests that not all cryptococcosis originates from pigeon droppings.

The combination of chorioretinitis and exudation in relation to retinal vessels is extremely unusual in idiopathic posterior uveitis but has been described in cryptococcal eye disease, where focal and miliary lesions may also be seen. Diagnosis is by lumbar puncture or by vitreous aspiration. Ocular disease usually complicates meningitis by direct or haematogenous spread. It is rare in the immunocompetent and rarer still in the absence of other organ disease, though it is common in cryptococcosis for the primary site of infection (usually the lung) to be asymptomatic or even heal while disease in a secondary site (usually the meninges) progresses. Eye infection has been known to regress spontaneously.

Uveitis usually follows neurological disease. There is only one previous case report of uveitis preceding cryptococcal meningitis, when anterior uveitis developed into a posterior uveitis which progressed over 12 months while the patient was on steroids. Transient vertigo and ataxia resolved, but CSF taken when the patient was neurologically normal had detectable antigen and eventually grew C. neoformans.

The likely sequence of events in our patient was as follows. An oriental, possibly a 'genetic hypo-responder,' was exposed to a large dose of C. neoformans which entered the lung, produced subclinical meningitis and then involved the eye, becoming clinically apparent as a uveitis. At the time steroids were prescribed a mild headache had begun, possibly the first symptom of meningitis, which under the influence of steroids became fulminant.

This case emphasises that cryptococcosis can affect the immunocompetent, especially orientals, in whom the major differential diagnosis is often tuberculosis. It may present as a uveitis and should be considered by the physician whenever the combination of chorioretinitis and exudation in relation to retinal vessels occurs, or when a patient with 'idiopathic' uveitis develops even mild or transient neurological symptoms.

We thank Ms L Churchill for secretarial help.

References

Accepted for publication 16 October 1986.
Cryptococcal meningitis presenting as uveitis.

S P Stone, J Bendig, J Hakim, P E Kinnear, B S Azadian and F Clifford-Rose

doi: 10.1136/bjo.72.3.167

Updated information and services can be found at:
http://bjo.bmj.com/content/72/3/167

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/