A study of the effects of four concentrations of D-timolol, 0.25% L-timolol, and placebo on intraocular pressure on patients with raised intraocular pressure

K B MILLS, N J JACOBS, AND R VOGEL

From the Manchester Royal Eye Hospital

SUMMARY The intraocular pressure lowering effect in 30 patients with raised intraocular pressure and open angles following a single application in a randomised double-masked fashion of four concentrations of D-timolol (0.25%, 0.5%, 1.0%, and 2.0%), 0.25% L-timolol, and placebo are presented. The percentage reduction in intraocular pressure after four hours following single-drop instillation range from 20% to 25% in the D-timolol group, 32% in the L-timolol group, and only 8% in the placebo group of treated eyes.

The role of L-timolol (that is, the S-enantiomer of timolol) in the treatment of glaucoma is well established.1,2 The success of L-timolol can be attributed to its relatively long duration of action, the minimal development of tolerance, and lack of membrane stabilising (local anaesthetic) activity. However, L-timolol, being a non-selective β-adrenergic blocking agent, must be used with caution in patients with known contraindications to the systemic use of β-adrenergic receptor blocking drugs. These include bronchial asthma, sinus bradycardia and greater than first degree heart block, and cardiogenic shock. Any systemically absorbed drug following topical administration may affect extraocular β-adrenergic receptor systems in the same patients.

The R-enantiomer of timolol (D-timolol) is also a non-selective β-adrenergic blocker, but its potency as a β-blocker is substantially less than that of L-timolol.3 D-Timolol has only 3% of the potency of L-timolol in blocking the isoproterenol-induced synthesis of adenosine 3'-3,5', monophosphate in irsiliary body preparations.4 In water loaded pigmented rabbits both stereoisomers blunt the peak increase in intraocular pressure and also reduce its down phase, though L-timolol is more effective.5 D-Timolol is about one-third as potent as timolol in displacing H-dihydro-alprenolol binding to iris-ciliary body tissue, reducing aqueous humour formation, and lowering intraocular pressure of α-chymotrypsin hypertensive eyes.6 In contrast the R-enantiomer is 50–90 times less potent than timolol in antagonising the effects of isoproterenol on pulmonary and atrial β-adrenergic receptors7 and may be effective in lowering intraocular pressure in man at concentrations which may reduce the systemic side effects associated with peripheral β-adrenergic blockade. D-Timolol has been shown to produce a significant lowering of intraocular pressure following single-drop application in patients with ocular hypertension.8

The present study was undertaken to compare the effects on raised intraocular pressure of a single application of four concentrations of D-timolol (0.2%, 0.5%, 1.0%, and 2.0%) with 0.25% L-timolol and placebo in patients with raised intraocular pressures and open angles.

Patients and methods

Patients with raised untreated, symmetrical (no more than 5 mmHg difference in intraocular pressure between eyes) intraocular pressures (of 22 mmHg in each eye or higher by Goldmann applanation tonometry) and open angles, between the ages of 18 and 75, were considered for inclusion in the study. Patients suffering from, or with a history of, cardio-

Correspondence to K B Mills, FRCS, Manchester Royal Eye Hospital, Oxford Road, Manchester M13 9WH.
vascular disease or constrictive airways disease, active corneal disease or corneal scarring, previous ocular surgery, or receiving concomitant systemic medication affecting intraocular pressure, including β-blocking drugs and clonidine, or taking adrenergic augmenting psychotropic drugs such as monoamine-oxidase inhibitors or tricyclic antidepressants were excluded from the study.

Thirty patients gave their informed written consent to take part in the trial (and were free to remove themselves from the trial without explanation at any time). Each of the 30 patients received two of the six possible treatments. The allocation of treatments was such that each was given to 10 different patients. Only one eye was treated, and the eye to be treated and the treatment to be received were determined by a random allocation schedule. Each treatment was delivered from identical 5 ml ocumeters containing one of the following six compounds; 0-25% D-timolol, 0-5% D-timolol, 1-0% D-timolol, 2-0% D-timolol, 0-25% L-timolol, and placebo to match (vehicle of D-timolol).

All intraocular pressure reducing medications were washed out for at least two weeks. Within this period all patients had, before treatment, history taken and examination made to ensure that they satisfied admission and exclusion criteria.

Immediately prior to treatment the resting heart rate and blood pressure were measured in all 30 patients after they had been sitting for four minutes. The visual acuity, pupillary size, and results of an external ocular examination followed by an initial applanation intraocular pressure were recorded for both eyes. The first of the randomly assigned drops was instilled into the conjunctival sac of one randomly selected eye. All examinations were repeated at one, two, and four hours after treatment.

Each patient returned two weeks later to receive the second treatment in the same eye as the first treatment. No ocular treatment was allowed during the period between the first and second treatment days. Examinations for the second treatment day followed the same schedule as for the first day. Any subjective side effects following topical instillation of any of the treatments were noted.

Results

All 30 patients completed the study. The mean IOP in the treated eyes at the studied time points are shown in Fig. 1. The results were compared by single classification analysis of variance. The mean starting intraocular pressures (as shown in Table 1) were statistically similar in each treatment group (p>0-05) and ranged from 25-4-30-5 mmHg. Four hours following the administration of the eye drops the intraocular pressure had fallen by varying amounts according to the treatment used (Table 1). Placebo and 0-25% D-timolol did not produce a significant reduction in intraocular pressure. However, 0-5%, 1%, and 2% D-timolol and 0-25% L-timolol did all produce a significant reduction in intraocular pressure four hours after treatment in comparison with placebo (variance ratio 2-6; p<0-05). These reductions in intraocular pressure did not differ significantly from one another. Fig. 2 and Table 2 show the mean change in intraocular pressure in the treated eyes over time following single-drop instillation of each treatment.

The initial intraocular pressures in untreated eyes were similar in each group (variance ratio 1-5%;

Table 1 Initial and four-hour mean IOPs and percentage IOP reduction over four hours—treated eyes

<table>
<thead>
<tr>
<th>Treatment</th>
<th>n</th>
<th>Starting mean IOP</th>
<th>SD</th>
<th>Final mean IOP (4 hours)</th>
<th>SD</th>
<th>IOP reduction % over 4 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-timolol (0-25%)</td>
<td>10</td>
<td>29-00</td>
<td>6-8</td>
<td>22-8</td>
<td>6-2</td>
<td>19-42</td>
</tr>
<tr>
<td>R-timolol (0-5%)</td>
<td>10</td>
<td>25-4</td>
<td>3-44</td>
<td>20-0</td>
<td>4-4</td>
<td>20-92</td>
</tr>
<tr>
<td>R-timolol (1-0%)</td>
<td>10</td>
<td>27-0</td>
<td>4-2</td>
<td>20-6</td>
<td>5-1</td>
<td>23-97</td>
</tr>
<tr>
<td>R-timolol (2-0%)</td>
<td>10</td>
<td>27-0</td>
<td>5-4</td>
<td>19-9</td>
<td>4-8</td>
<td>25-34</td>
</tr>
<tr>
<td>L-timolol (0-25%)</td>
<td>10</td>
<td>30-5</td>
<td>5-5</td>
<td>20-7</td>
<td>6-7</td>
<td>32-89</td>
</tr>
<tr>
<td>Placebo</td>
<td>10</td>
<td>30-2</td>
<td>7-1</td>
<td>27-1</td>
<td>5-7</td>
<td>8-98</td>
</tr>
</tbody>
</table>
Effects of timolol and placebo on intraocular pressure

![Graph showing mean fall in IOP for treated eyes](image)

Fig. 2. Mean fall in IOP: treated eyes. P=placebo. 0.25=D-timolol 0.25%. T=L-timolol. 1.0=D-timolol 1%. 0.5=D-timolol 0.5%. 2.0=D-timolol 2%.

Table 3 Initial and four hour mean IOPs and percentage IOP reduction over four hours—untreated eyes

<table>
<thead>
<tr>
<th>Treatment</th>
<th>n</th>
<th>Starting mean IOP (mmHg)</th>
<th>SD</th>
<th>Final (4 hours) IOP mmHg</th>
<th>SD</th>
<th>IOP Reduction %</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-timolol (0.25%)</td>
<td>10</td>
<td>29.00</td>
<td>5.4</td>
<td>25.9</td>
<td>5.93</td>
<td>8.51</td>
</tr>
<tr>
<td>R-timolol (0.5%)</td>
<td>10</td>
<td>27.2</td>
<td>4.2</td>
<td>22.9</td>
<td>3.75</td>
<td>15.53</td>
</tr>
<tr>
<td>R-timolol (1.0%)</td>
<td>10</td>
<td>28.5</td>
<td>4.93</td>
<td>25.2</td>
<td>4.69</td>
<td>11.05</td>
</tr>
<tr>
<td>R-timolol (2.0%)</td>
<td>10</td>
<td>28.1</td>
<td>4.7</td>
<td>26.1</td>
<td>3.7</td>
<td>6.49</td>
</tr>
<tr>
<td>L-timolol (0.25%)</td>
<td>10</td>
<td>31.9</td>
<td>4.04</td>
<td>26.1</td>
<td>3.87</td>
<td>18.08</td>
</tr>
<tr>
<td>Placebo</td>
<td>10</td>
<td>31.8</td>
<td>6.68</td>
<td>27.3</td>
<td>5.77</td>
<td>13.79</td>
</tr>
</tbody>
</table>

There were no significant differences in blood pressure, pulse, or pupil size between the different treatment groups and placebo at four hours in comparison with the pretreatment state. No subjective side effects were reported.

Discussion

Even allowing for the fact that the mean pretreatment IOPs were slightly though not significantly lower for D-timolol 0.5%, and less so for the D-timolol 1% and 2%, our results confirm that D-timolol concentrations of 0.5%–2% were effective in lowering an elevated intraocular pressure following single-drop application. These reductions were comparable to the reduction produced by 0.25% L-timolol following single-drop application. The percentage fall in IOP for the 0.25% L-timolol was greater than the D-timolol concentrations tested, though not significantly so. The slightly higher initial IOP for the 0.25% L-timolol group makes it difficult to make a completely reliable comparison on these data. The ocular hypotensive effect last longer than the period of the study (four hours).

The results of the studies by Share et al.* indicate that D-timolol lowers intraocular pressure by the same mechanism of action as timolol. However, in extracranial tissues D-timolol is considerably less potent than L-timolol in blocking β-adrenergic receptors.** This implies that the R-enantiomer may represent an ocular-selective antiglaucoma effect.

Table 2 Mean differences in IOP (mmHg) (SD)—treated eyes

<table>
<thead>
<tr>
<th>Time from instillation</th>
<th>D-Timolol 0-25%</th>
<th>D-Timolol 0-5%</th>
<th>D-Timolol 1%</th>
<th>D-Timolol 2%</th>
<th>L-Timolol 0-25%</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 hour</td>
<td>4.1 (1.74)</td>
<td>3.3 (1.68)</td>
<td>5.1 (1.78)</td>
<td>6.4 (1.92)</td>
<td>7.7 (1.99)</td>
<td>2.4 (1.4)</td>
</tr>
<tr>
<td>2 hours</td>
<td>5.4 (2.29)</td>
<td>4.9 (1.76)</td>
<td>5.4 (1.97)</td>
<td>6.9 (2.1)</td>
<td>8.9 (2.29)</td>
<td>3.0 (1.47)</td>
</tr>
<tr>
<td>4 hours</td>
<td>6.6 (2.54)</td>
<td>5.4 (2.04)</td>
<td>6.4 (1.84)</td>
<td>7.1 (2.25)</td>
<td>9.8 (2.89)</td>
<td>4.5 (1.65)</td>
</tr>
</tbody>
</table>
D-Timolol may act on a population of ocular β-adrenergic receptors which show relatively poor stereo selectivity. If studies on respiratory and cardiac function effects of R-timolol confirm the animal and tissue study data, there will be clear clinical advantages to be gained from the use of this more ocular-selective enantiomer.

This study was supported by a grant from Merck, Sharp and Dohme. We thank Carole Page for her help in preparing the manuscript.

References

Accepted for publication 2 April 1987.
A study of the effects of four concentrations of D-timolol, 0.25\% L-timolol, and placebo on intraocular pressure on patients with raised intraocular pressure.

K B Mills, N J Jacobs and R Vogel

doi: 10.1136/bjo.72.6.469

Updated information and services can be found at: http://bjo.bmj.com/content/72/6/469

These include:

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/