Graves’ ophthalmopathy: II. Correlation of clinical signs with measures derived from computed tomography

E SVERKER HALLIN1 AND STEVEN E FELDON2

From the 1Department of Ophthalmology, University of Göteborg, Sweden, and the 2Departments of Ophthalmology and Neurological Surgery, University of Southern California School of Medicine, Los Angeles, California, USA

SUMMARY Quantitative clinical and computed tomographic (CT) measures of Graves’ ophthalmopathy were obtained in 76 patients. Significant correlation of several CT parameters of the mid-orbital axial CT slice with optic nerve involvement was established. By means of clinical measures, only limitation of ocular motility was found to correlate with the optic neuropathy. The results suggested that there were two distinct populations of patients with Graves’ disease which could be segregated by CT scan and clinical evaluation, one which developed optic neuropathy and one which did not. Therefore simple measures performed on the mid-orbital slice of the CT scan are recommended for all patients with Graves’ ophthalmopathy as an important adjunct to careful evaluation of extraocular muscle function, in order to identify patients at risk of developing optic neuropathy.

Computed tomography is a useful technique in the assessment of Graves’ ophthalmopathy.1-4 When used in association with limitation of extraocular muscle function, computation of total extraocular muscle volume on CT identifies the population at risk for developing optic neuropathy.5-7 However, several quantitative measures other than total extraocular muscle volume have now been shown to be highly correlated with total volume. These new measures are much easier and faster to obtain by either automatic or manual techniques of analysis.8 The purpose of this paper is to correlate these other CT-derived measures with clinical manifestations of Graves’ ophthalmopathy. In so doing, an optimal technique for assessing patients with Graves’ ophthalmopathy can be established.

Material and methods

One hundred and fifty-two orbits in 76 patients with Graves’ ophthalmopathy were studied and have been described in a companion paper.8 An analysis of CT scans was performed, consisting of the quantitative estimation of extraocular muscle volume, mid-orbital extraocular muscle area (the area of medial and lateral recti being added together), mid-orbital medial rectus muscle area, and width (Fig. 1). Furthermore, on the mid-orbital axial CT slice (defined as that section imaging the crystalline lens, the optic nerve head, and the optic canal) preseptal area, proptosis, and the ratio of orbit to fat were calculated. The derivation of these CT measures has been described in detail elsewhere.8

In addition to CT analysis the following clinical signs of Graves’ ophthalmopathy were evaluated: proptosis, periorbital oedema, lid retraction, lid lag, limitation of ocular motility, and optic neuropathy. Proptosis was measured with the Krahn exophthalmometer. Periorbital oedema was assessed in 112 of the orbits by measuring herniation of the upper lid tissue over the upper lid fold. Lid retraction was established as the exposure of sclera superior to the corneal limbus. Lid lag was measured in a manner similar to lid retraction, but with the eyes directed downwards (Fig. 2). Limitation of ocular motility was calculated as a percentage of full excursion in both horizontal and vertical directions of gaze. The semi-quantitative techniques used to determine the clinical
Graves' ophthalmopathy: II. Correlation of clinical signs with measures derived from computed tomography

afferent pupillary defect, the loss of acuity or colour vision, or the presence of visual field defects not attributable to other eye disease. Patients were categorised as having no optic neuropathy (group 1, 50 patients), having developed optic neuropathy during follow-up (group 2, 13 patients), or having presented with optic neuropathy (group 3, 13 patients). The minimum follow-up time was six...
months. The group number was used as a continuous variable in estimating the degree of optic nerve involvement for the purpose of calculating correlations with other measures of Graves' ophthalmopathy.

Results

Correlation of Clinical Signs with CT Measurements

Clinical signs of Graves' ophthalmopathy were correlated with several quantitative measures determined from the CT scans. These results are summarised in Table 1. As expected, total extraocular muscle volume was highly correlated with the presence of optic neuropathy ($r=0.65$, $p<0.001$) and was also significantly correlated with proptosis, total extraocular muscle limitation, and orbital swelling. Similar high correlations with optic neuropathy were also obtained using either the muscle area ($r=0.65$, $p<0.001$) or the medial rectus muscle area ($r=0.57$, $p<0.001$). Interestingly, medial rectus muscle width showed the highest correlation of any CT measure with total limitation of extraocular muscle function ($r=0.55$, $p<0.001$), and was nearly as highly correlated as the more complex volume and area measures of the extraocular muscles with optic neuropathy ($r=0.61$, $p<0.001$) and periorbital oedema ($r=0.44$, $p<0.001$).

Correlation of Clinical Signs with Each Other

Clinical signs of Graves' ophthalmopathy were correlated with each other. The results are summarised in Table 1. Significant correlations were obtained only for clinical measures compared with the occurrence of optic neuropathy. Even so, total limitation of extraocular motility ($r=0.45$, $p<0.001$) and periorbital oedema ($r=0.35$, $p<0.01$) were less correlated with optic neuropathy than were many of the CT measures.

Exophthalmometry and Periorbital Oedema

Exophthalmometry, a frequently used but highly variable method for quantitation of Graves' ophthalmopathy, showed poor correlation with optic neuropathy ($r=0.14$, $p>0.1$) and other clinical signs. Proptosis determined from the CT scans correlated significantly with neither optic neuropathy nor total limitation of ocular motility, but did correlate poorly with Krah exophthalmometry ($r=0.73$). The preseptal area was defined as the tissue anterior to a line connecting the lateral orbital rims, limited by the soft tissue laterally and orbital wall medially. The preseptal area encompassed elements of both periorbital oedema and proptosis, and it was significantly correlated with optic neuropathy and other clinical signs, such as total limitation of motility and periorbital oedema.

A scatterplot comparing preseptal area with proptosis showed a linear relationship through about 70% of the total range of proptosis. After proptosis was maximal, preseptal area continued to increase. Therefore, preseptal area was a more effective quantitative measure of orbital swelling in Graves' ophthalmopathy than were Krah or Hertel readings (Fig.3).

Measures Identifying Patients at Risk for Optic Neuropathy

An attempt was made further to compare the ability of various CT and clinical measures to confirm the presence or predict the development of optic neuro-
Graves' ophthalmopathy: II. Correlation of clinical signs with measures derived from computed tomography

Table 2. Evaluation of clinical and CT signs of Graves' ophthalmopathy in separating patients with and without optic neuropathy

<table>
<thead>
<tr>
<th>CT measurements</th>
<th>No risk optic vs present neuropathy</th>
<th>No risk optic vs developed neuropathy</th>
<th>Present optic vs developed neuropathy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t</td>
<td>p<0.0001*</td>
<td>t</td>
</tr>
<tr>
<td>Muscle area</td>
<td>9.88</td>
<td>p<0.0001</td>
<td>6.33</td>
</tr>
<tr>
<td>Total muscle volume</td>
<td>9.68</td>
<td>p<0.0001</td>
<td>6.74</td>
</tr>
<tr>
<td>Medial rectus width</td>
<td>8.93</td>
<td>p<0.0001</td>
<td>6.79</td>
</tr>
<tr>
<td>Medial muscle area</td>
<td>7.87</td>
<td>p<0.0001</td>
<td>5.66</td>
</tr>
<tr>
<td>Orbit/fat ratio</td>
<td>7.33</td>
<td>p<0.0001</td>
<td>5.84</td>
</tr>
<tr>
<td>Preseptal area</td>
<td>4.37</td>
<td>p<0.0001</td>
<td>4.32</td>
</tr>
<tr>
<td>Proptosis</td>
<td>3.23</td>
<td>p<0.0001</td>
<td>2.92</td>
</tr>
</tbody>
</table>

Clinical signs

Motility limitation | 4.49 | p<0.0001 | 5.68 | p<0.0001 | 0.88 | NS (p<0.2) |
Peri orbital oedema | 3.59 | p<0.0001 | 3.33 | p<0.0001 | 0.26 | NS (p<0.4) |
Exophthalmometry | 1.52 | NS (p<0.07) | 1.21 | NS (p<0.2) | 0.25 | NS (p<0.5) |
Lid lag | 0.72 | NS (p<0.3) | 0.39 | NS (p<0.4) | 0.17 | NS (p<0.4) |
Lid retraction | 0.21 | NS (p<0.5) | 0.49 | NS (p<0.4) | 0.52 | NS (p<0.4) |

*p Values >0.001 were not considered as significant because multiple correlation was performed.

Graves' ophthalmopathy: II. Correlation of clinical signs with measures derived from computed tomography

Pathy. These comparisons were performed using multiple t tests. Therefore, only p values less than 0.001 were considered statistically significant. These data are summarised in Table 2. Virtually all CT measures, including muscle width, could significantly (p<0.0001) distinguish the groups that either had or developed optic neuropathy from the group that did not have optic neuropathy. The only clinical measures that distinguished these groups were total limitation of extraocular motility and periorbital oedema.

Neither CT measures nor clinical measures of Graves' ophthalmopathy successfully differentiated between the group that presented with optic neuropathy and the group that developed optic neuropathy. Some nearly significant differences were detectable between these groups by CT measures of extraocular muscle area (p<0.006) or volume (p<0.008).

Discussion

Clinical and CT measures of Graves' ophthalmopathy have been compared, especially with regard to their relationship to optic neuropathy. All CT measures of extraocular muscle enlargement correlated significantly; muscle area and total muscle volume were the most highly correlated. The only clinical measures that correlated significantly with optic neuropathy were limitation of ocular motility and perhaps periorbital oedema, confirming a prior study.

Along with other CT-derived measures, medial rectus width, which may be obtained manually, was reliably able to distinguish between the group that would develop optic neuropathy and the group that would not. There seemed to be no reliable way of distinguishing the group that developed optic neuropathy from the group that presented with optic neuropathy. Therefore it is likely that these groups were in fact the same population.

This study has established quantitative CT evaluation of the extraocular muscles and preseptal area as the most important parameters in assessing and following up patients with Graves' ophthalmopathy. Muscle area can be determined by the radiologist using morphometric analysis available on most CT scanners. Similarly, preseptal area is easy to calculate and is a better measure of anterior manifestations of Graves' ophthalmopathy than are either Krahn exophthalmometry or clinical evaluation of periorbital oedema. If automatic analysis is not available, medial rectus muscle width is an exceptionally easy measure to obtain manually for evaluating risk of optic neuropathy, requiring only a single mid-orbital thin CT section and no special equipment, training, or calculation.

Although many clinical signs are of value in diagnosing orbital involvement with Graves' disease, limitation of motility and optic nerve changes only need be regularly evaluated once a baseline orbital CT scan has been performed and measured.

This study was supported in part by Handlande Herman Svenssons Fond, by De Blinda Vanner and by grant EY03908 awarded by the National Institutes of Health, USA. ESH was a research fellow in the Department of Ophthalmology, University of Southern California School of Medicine.

References

Accepted for publication 2 July 1987.
Graves' ophthalmopathy: II. Correlation of clinical signs with measures derived from computed tomography.
E S Hallin and S E Feldon

doi: 10.1136/bjo.72.9.678

Updated information and services can be found at:
http://bjo.bmj.com/content/72/9/678

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/