Correspondence

Necrotising fasciitis of the eyelids

Sir, A fatal case of this infection, involving a 35-year-old man in Southampton was described recently in your journal by Walters. He has referred to four previously described cases, including two in Southampton, but Carruthers et al., Bahna and Canalis, and Holliman and Catford have described nine others.

The provisional diagnosis of preseptal cellulitis, with erythema and oedema of the right forehead, eyelid, cheek, and neck following a poke in the eye by the patient's daughter, together with purulent discharge from the eye containing Gram-positive cocci (? streptococci) should have prompted the diagnosis of β-haemolytic streptococcal (BHS) or staphylococcal sepsis. Coliform bacteria, as suggested by Walters, are not associated with causing this infection at this site, but can cause necrotising fasciitis of the abdominal wall in association with Bacteroides spp following abdominal injury or surgery. The initial drugs of choice are benzylpenicillin in very large doses (20 to 30 megaunits per day intravenously) together with flucloxacillin 4 G intravenously per day until culture results are known. Third generation cephalosporins, namely, cefotaxime, together with gentamicin and chloramphenicol, are not indicated, nor is metronidazole, as anaerobic bacteria such as Bacteroides spp, fusobacteria, and anaerobic streptococci, which rarely cause this infection originating from an oral focus, are sensitive to benzylpenicillin. If the patient is allergic to penicillin, then cephaloridine or erythromycin should be used instead.

It is known that sudden death in this infection can occur from disseminated intravascular coagulation (DIC) due to BHS septicemia, from which the patient probably suffered. Anticoagulation with heparin should be considered in the early stages of management, supported by haematological parameters, and is life saving. The infection spreads rapidly through tissue causing thrombosis of vessels above the fascial layer, for which surgical debridement is preferred as antibiotics penetrate into the necrotic tissue with difficulty, reflecting the need for very large doses.

Bahna and Canalis reviewed the literature and recorded early debridement of the eyelid in four out of eight patients, of whom two survived. However, more conservative treatment has been pursued by others, including ourselves in Southampton, when the necrotic tissue of the lid was allowed to form a black eschar over several months in the presence of large doses of penicillin. Reconstructive surgery of the lid was still required for loss of tissue and ectropion, but vision was not lost as the globe itself is not usually involved in the infection. Blindness has occurred in one patient with this infection, thought to be due to retinal vein thrombosis from pressure of surrounding orbital cellulitis. Decompression should be considered in such cases. Walters reviewed debridement at sites other than the eye, where early surgery is recommended, except one case.

Early recognition of the clinical features of these infections can be life saving, but fortunately they occur rarely nowadays and the aetiology is often missed. The infection advances rapidly, giving the skin a patchy blue appearance; if blistering occurs it is pathognomonic. Patients also develop toxæmia with a characteristic euphoria and sloughing of the affected part, especially when it becomes anaesthetic. Some patients develop early fatal septicaemia and DIC, often occurring over as little as 12 hours, while in others the infection remains localised to necrotic tissue, probably reflecting the host response for both opsonic phagocytosis as well as the propensity for small vessel thrombosis. This type of infection is more common in diabetics and the elderly.

BHS group A (Streptococcus pyogenes) M type 73 was isolated in pure culture from the blood and lid of Walter's patient. We and others have similarly isolated a pure growth of BHS group A from four patients with this type of lid infection, but, in their review, Bahna and Canalis identified three out of eight patients in whom both BHS group A and Staphylococcus aureus were isolated; Carruthers et al. also isolated this combination. In a rabbit model of this spreading infection we have found synergy between Staph. aureus or its α-lysins and BHS group A for initiating spread. Such initial synergy may occur in humans as well, though Staph. aureus has only been isolated from 17% of 36 cases. This synergy is missed if the spreading edge of the infection, or the necrotic slough, is cultured rather than the initial site of invasion; ideally, both sites should be investigated. The cause of the spreading thrombosis is probably toxin mediated and not due to the inflammatory effect of streptococcal cell walls.

D V SEAL

Institute of Ophthalmology, 17–25 Cayton Street, London EC1V 9AT

References


Sir, Dr David Seal's letter is interesting and comprehensive and I am grateful for the information regarding other cases of necrotising fasciitis involving the eyelids.

I would certainly concur with Dr Seal that the β-haemolytic streptococcus is the principal causative organism of necrotising fasciitis and that high dose benzylpenicillin is the treatment of choice (with the support from flucloxacillin as cover against Staphylococcus aureus). The choice of anti-
Optic nerve involvement in methanol poisoning

Sir: I was very much interested to read the paper entitled 'Optic nerve involvement in a case of methanol poisoning' by Peter Naeser. This paper contains some serious errors of omission as well as commission. To set the record straight, I would like to point these out. They are as follows:

(1) We produced experimental methyl alcohol poisoning in rhesus monkeys and investigated exhaustively the subject of ocular and optic nerve toxicity by conducting detailed clinical, morphological, and biochemical studies on the subject. The author makes no mention of our studies at all. Our studies proved that the principal ocular lesion seen in methanol poisoning is the development of toxic optic neuropathy; this contradicts the statement by the author that 'the optic nerve has only infrequently been investigated.' We investigated the optic nerve in detail by light and electron microscopy and found swelling of the oligodendroglial cytoplasm in contact with the axons and of the astrocytes in the retrolaminar optic nerve and the intraorbital optic nerve. We found no vascular lesions in the optic nerve on light and electron microscopy, nor on horseradish peroxidase studies.

(2) The author states that 'The perfusion of the central parts of the nerve from a central optic nerve vessel with different extension may be of importance.' The author cites a 25-year-old paper by François and Neetens in support of the existence of a central artery of the optic nerve; a few months after that paper was published I pointed out the fallacies in this paper by François and Neetens and disproved conclusively the existence of any such central artery of the optic nerve, based on my studies. My detailed studies on the ophthalmic artery and blood supply of the optic nerve to the papilla (1) (to which the author makes no reference in the paper) showed that no such artery exists in man. This finding was later confirmed in studies by several other authors, including François' own group subsequently. However, when they stated that in their series of 40 optic nerves they did not find any central artery of the optic nerve, I thought the mythical central artery of the optic nerve expired long, long ago. The concept of a watershed zone in the retrolaminar part of the optic nerve, postulated by Rootman and Butler, totally lacks any scientific proof. Thus the basic assumptions regarding the blood supply of the optic nerve in this paper are invalid.

It is a tragedy that the subject of the blood supply of the optic nerve has been plagued for decades by a very serious problem. To explain ischaemic disorders of the optic nerve according to their preconceived theories many authors from time to time have resorted to misstating and distorting the observed facts about the blood supply of the optic nerve; to suit their own convenience they have ignored well established anatomical and physiological facts. To create anatomy to suit a pet theory instead of vice versa is the exact opposite of scientific inquiry. No matter how often they are disproved, such pet theories once published, persist like skeletons which may tumble out of the closet years later, like the mythical central artery of the optic nerve, so miraculously resurrected in this paper.

The author, based on one case, implies that optic nerve damage in methanol poisoning is due to vascular disturbance in the optic nerve. Our studies, and those by many other authors, based on much more extensive material, lend no support to this view. Thus this misleading paper, in an effort to explain the optic nerve lesions in one case, ignores all the weight of evidence available on the subject of changes in the optic nerve in methanol poisoning and on the blood supply of the optic nerve. This seriously undermines its scientific credibility.

SOHAN SINGH HAYREH
Department of Ophthalmology,
University of Iowa,
Iowa City, Iowa 52242,
USA

References
Necrotising fasciitis of the eyelids.

D V Seal

doi: 10.1136/bjo.73.3.237

Updated information and services can be found at:
http://bjo.bmj.com/content/73/3/237.citation

Email alerting service

These include:
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/