Uveal malignant melanoma and optic nerve glioma in von Recklinghausen's neurofibromatosis

C Mark Antle, Karim F Damji, Valerie A White, Jack Rootman

Abstract
A case of uveal malignant melanoma and contralateral optic nerve glioma is described in a 53-year-old Caucasian male with multiple uveal melanocytic hamartomas and neurofibromatosis. The eye was enucleated, and histologically the melanoma was found to consist of 70% epithelioid cells, with many bizarre, multinucleated forms. CT scan demonstrated a non-enhancing, fusiform enlargement of the contralateral optic nerve with enlargement of the optic canal and intracranial extension. This combination of tumours has not previously been reported in a patient with neurofibromatosis and serves to emphasise the common neuroectodermal origin of tumours in this autosomal dominant condition.

Optic nerve glioma1,2 and uveal malignant melanoma3-13 have both been reported in von Recklinghausen's neurofibromatosis (NF). While the incidence of optic nerve glioma varies from 10 to 70%,2 only 11 cases of uveal malignant melanoma in NF are reported.2,14 In NF uveal malignant melanoma has been reported with acoustic schwannoma1 and with orbital neuroma.1 We describe the previously unreported association of uveal malignant melanoma and contralateral optic nerve glioma in a patient with multiple uveal melanocytic hamartomas and neurofibromatosis.

Case report
A 53-year-old Caucasian man with multiple cutaneous neurofibromata, café-au-lait spots, and a family history of NF presented with a four-day history of blurry vision in the left eye rapidly progressing to total grey-out of vision. The visual acuities were 20/20-3 in the right eye and 20/400 in the left, with a left afferent pupillary defect. The interpalpebral fissures, results of exophthalmometry, and IOP measurements were normal and symmetrical. Neither globe showed displacement. Multiple Lisch nodules and iris naevi were seen, particularly in the left eye, which also had a large inferior sentinel vessel and a cataract. There was a large ciliochoroidal tumour between 4 and 8 o'clock, with 9-10 mm of elevation, a total retinal detachment, and anterior iris displacement between 4 and 6 o'clock.

Ultrasonography showed a solid, horseshoe shaped mass in the choroid extending from inferotemporal to inferonasal quadrants.

Computed tomography showed a normal left orbit and a left globe of normal size with an enhancing lobulated uveal mass in its inferior half extending bilaterally to the ora (Fig 1) without extrascleral extension. On the right the optic nerve had a non enhancing, fusiform enlargement, with expansion of the optic canal and intracranial extension. No cerebellopontine angle or internal auditory canal abnormality was seen.

Malignant melanoma was suspected, and it was confirmed on intraoperative fine needle aspiration biopsy, which showed numerous malignant epithelioid melanocytes with large vesicular nuclei and prominent nucleoli. The biopsy was followed by a cryoenucleation. The globe was 24-25 mm in diameter with corneal measurements of 13 x 11.5 mm. Oblique sectioning exposed a black tumour with a 17 mm base and a height of 7 mm. The overlying retina was detached.

Figure 1  Axial CT scan showing fusiform enlargement of the optic nerve with intracranial extension (right) and lobulated uveal mass (left).

Figure 2  Low power view of globe showing lobulated tumour arising from the uveal tract and associated retinal detachment. (Haematoxylin and eosin, ×2.7.)
Histologically a poorly differentiated malignant melanoma arose from the uvea, abutted the lens, occupied the pars plana, and extended three-quarters of the way to the posterior pole (Fig 2). The densely pigmented tumour cells were 70% epithelioid and 30% spindle, with many bizarre, multinucleated forms (Fig 3). The tumour stained moderately for S100 protein and strongly with the monoclonal antibody HMB45. Large sinusoidal spaces and focal areas of haemorrhage and necrosis were identified. There was no paraoesophageal extension. The detached retina was degenerated.

In the neovascularised iris spindle to polygonal shaped cells, many with intranuclear inclusions, formed numerous S100-positive melanocytic hamartomas (Fig 4). In the choroid multiple diffuse hamartomatous aggregations of melanocytes, some extending round the emissaria posteriorly, were present and stained strongly positive for S100 protein and occasionally with HMB45 (Fig 5).

The patient presented three months later with diffuse metastatic disease and died 13 months after enucleation.

Discussion

Neurofibromatosis, first described by von Recklinghausen in 1882, is a common autosomal dominant disorder with a prevalence of 1 in 3000. It has one of the highest mutation rates in humans. Though it was previously considered to be a heterogeneous disorder with variable expression, linkage analysis in NF families has recently identified a consistent mutation at a single locus on chromosome 17.

Melanocytic and glial lesions of NF are derived from the neural crest. The association of optic nerve glioma and NF is established, and an increased incidence of uveal malignant melanoma is also noted despite the small number of cases (11) reported. Uveal naevi are also found more frequently. Concurrent malignant melanoma and optic nerve glioma

have not previously been reported, but the conjunction illustrates the pathogenesis of NF as a 'complex neurocrystalpathy' as initially defined by Bolande. This concept envisages NF as a defect in development and regulation in which tissues derived from the neural crest show an increased incidence of benign tumours such as neurofibromas, schwannomas, neuremas, gliomas, meningiomas, café-au-lait spots, other cutaneous naevi, uveal naevi, and malignant tumours such as malignant schwannoma, pheochromocytoma, cutaneous malignant melanoma, and uveal malignant melanoma. A predisposition to uveal malignant melanoma may also exist because of the increased incidence of choroidal naevi in NF and the supposition that malignant melanoma arises from these naevi.

Other features of NF cannot be attributed directly to maldeveloped neural crest but may arise secondarily to interactions with other developing tissues, leading to additional anomalies such as malignant tumours (rhabdomyosarcoma, nephroblastoma, and myelogenous leukaemia), mesodermal defects (macrocephaly, pseudoarthrosis, kyphoscoliosis, short stature, sphenoid wing dysplasia), diminished intellect, speech defects, and pruritus.

The commonest ocular feature of NF is the Lisch nodule, present in over 90% of adult patients. Additional neural crest derived ocular features include neurofibromas of eyelid, conjunctiva, and orbit, café-au-lait spots, prominent corneal nerves, uveal naevi, choroidal glial hamartomas, optic nerve gliomas, intraocular schwannomas, sphenoid wing dysplasia, and uveal malignant melanoma.

The average age of patients with NF-related
uveal malignant melanomas is reported as 47, and our patient was 55. Two-thirds of enucleations for uveal malignant melanoma in the general population occur after age 50. Despite the lack of sex predilection in NF alone, none of the 11 previously reported patients in whom it was associated with uveal malignant melanoma were female, a distribution not seen in other series of uveal malignant melanoma. Seven tumours were reported as spindle cell, three as mixed cell, and one as epithelioid cell. The tumour in our case was mixed. Four cases showed extrascleral extension at enucleation, while the present case did not. The malignant cell type of our tumour and the large size suggested a poor outcome, with a five-year survival less than 40%. 

7 Nordmann J. Cancer de la choroïde et maladie de Reckling- 
Uveal malignant melanoma and optic nerve glioma in von Recklinghausen's neurofibromatosis.
C. M. Antle, K. F. Damji, V. A. White and J. Rootman

doi: 10.1136/bjo.74.8.502

Updated information and services can be found at:
http://bjo.bmj.com/content/74/8/502

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/