Letters to the editor

Seasonal variation in congenital toxoplasmosis

Sir,—Ocular toxoplasmosis is the most important cause of postnatal uveitis and is considered to represent a late manifestation of congenital infection.1,2 At present no definite cure exists for toxoplasmosis so prevention is of utmost importance. In 1984 the World Health Organization urged the initiation of worldwide prevention projects to decrease the frequency of this congenital disease.

The moment of maternal infection during pregnancy was reported as an important factor in the severity and frequency of the fetal infection.1 Severe congenital toxoplasmosis with either neonatal death or neurologic manifestations and ocular involvement is only encountered if the maternal infection occurs during the first two trimesters of pregnancy. Later acquisition results mostly in subclinical fetal infections and accounts for about 65% of all maternal seroconverisons. The cases of ocular toxoplasmosis manifested during adolescence and later are probably due to congenital infections associated with infection of the mother late in the pregnancy.

The aim of this study was to investigate whether the risk of maternal seroconversion depended on seasonal variation. We therefore analysed the birth dates of 532 patients with ocular toxoplasmosis, without evidence of any extracocular symptoms of toxoplasmosis and confirmed by serology, and we drilled the data with the overall birth rate variation in the Netherlands over the same time period (Fig 1). The diagnosis of ocular toxoplasmosis was made on clinical grounds — in patients with unilateral focal necrotizing retinitis sometimes associated with typical yellow and pigmented scars. In doubtful cases an active formation of antitoxoplasmal antibodies in the eye was assessed by the Goldmann-Witmer coefficient.3,4 Toxoplasma serology was not routinely performed since toxoplasma antibodies are present in the majority of the Dutch population and so positive titres in adults have no diagnostic value. The patients included were those who attended uveitis clinics with active ocular toxoplasmosis between 1987 and 1988. The birth dates of the patients and controls (population study of more than 20,000 persons per year) were between 1954 and 1969.

Two significant differences between the overall birth rates and those of patients were observed: a higher birth rate of children with ocular toxoplasmosis in May and a lower birth rate in November compared with the expected number of births (Fig 1; χ² test, p<0.05).

How are we to interpret these findings? All our patients had only ocular involvement of toxoplasmosis and so we can assume that the maternal infection probably took place during the third trimester of the pregnancy.5 A higher frequency of seroconversion in March, April, or May may thus be responsible for a peak of births observed in May.

These findings suggest that there may be a higher risk of congenital toxoplasmosis in the early spring and eventual preventive measures should take this phenomenon into account.

The authors thank the members of the Dutch Uveitis Group for their cooperation.

C. MEENKEN
A. ROTHova
A. KIJLSTRA
Department of Ophthalmology-Immunology,
The Netherlands Ophthalmic Research Institute,
Amsterdam,
Department of Ophthalmology,
Academic Medical Centre,
Amsterdam, The Netherlands

Angioid streaks in β-thalassaemia minor

Sir,—A report by Kinsella and Mooney1 described a 42-year-old woman of Italian origin with coexisting angioid streaks and β-thalassaemia minor. Her general physical and cutaneous examination were normal, and a skin biopsy in 1986 showed no histological evidence of pseudoxanthoma elasticum (PXE). She was referred to the dermatology department in November 1989. She had no symptoms referable to her skin but on close questioning agreed that her axillary skin had changed.

On examination lax skin was noted involving the patient's anterior neck and axillae. She had the typical 'plucked chicken' or cobblestone pattern of PXE of the axillae, with more subtle change of her posterolateral neck, accentuated by stretching the skin. A 4 mm punch biopsy obtained from clinically involved axillary skin and stained with haematoxylin and eosin and von Kossa's elastic stain and von Kossa reagent showed characteristic histological changes of PXE: clumping, disruption, and calcification of the elastic fibres within the dermis. Punch biopsy of the adjacent normal appearing skin showed no histological abnormalities.

An association between angioid streaks and PXE has been noted in at least 62% of cases of angioid streaks.2 The cutaneous lesions of PXE usually first appear before age 10, but may be delayed until the fourth or fifth decade.3 Early changes are frequently clinically subtle. On occasion a histological change consisting of tiny foci of abnormal elastic tissue may be detected in skin which is not clinically altered.4 Random biopsy of skin is unlikely to be helpful in establishing a diagnosis of PXE. The sites of predilection include the side of the neck, said to be the earliest, most frequent, and most heavily involved site in PXE, and next the auricular areas.5 Improved diagnostc yield may be attained by taking biopsy samples from scars.6

In addition to PXE, angioid streaks have been described in various haemoglobinopathies, and there are single case reports of their occurrence in some thalassaemias.1 The prevalence of angioid streaks in Paget's disease has recently come under scrutiny. A surprisingly low prevalence of 1-4% was noted, leading to the conclusion that Paget's disease is only infrequently associated with angioid streaks.7

Patients with angioid streaks of undetermined aetiology warrant careful clinical and cutaneous evaluation with skin biopsy sampling to detect subtle changes of possible aetiologic significance. If clinical examination and skin histology prove normal, these patients should be followed up until the fourth or fifth decade for possible subsequent development of PXE.

BRIGID F O'DONNELL
FRANK C POWELL
SEAN O'LOUGHLIN
Regional Centre of Dermatology
ROBERT W ACHESON
Regional Centre of Ophthalmology,
Mater Misericordiae Hospital,
Eccles Street,
Dublin 7, Ireland

Pattern visual evoked potential in ocular hypertension

Sir,—Drs Bray, Mitchell, and Howe are to be congratulated on their article1 on the significance of the pattern visual evoked potential in ocular hypertension.2 They say that they

Figure 1 Seasonal variation in congenital toxoplasmosis.

Birth ratio = number of children born with ocular toxoplasmosis/expected number
Seasonal variation in congenital toxoplasmosis.

C. Meenken, A. Rothova, A. Kijlstra and J. Oosting

Br J Ophthalmol 1991 75: 639
doi: 10.1136/bjo.75.10.639

Updated information and services can be found at:
http://bjo.bmj.com/content/75/10/639.1.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/