Ofloxacin compared with chloramphenicol in the management of external ocular infection


Abstract
The safety and efficacy of 0-3% ofloxacin in treating bacterial ocular infections was compared with that of 0-5% chloramphenicol in a parallel-group, randomised clinical trial at five sites. Clinical and microbiological improvement rates were studied in 84 culture-positive patients. Patients with suspected bacterial ocular infections were evaluated for clinical improvement and were included in drug safety and comfort analyses. Clinical improvement did not differ significantly between drug treatments. All patients completing the study (79 assigned ofloxacin, and 74 chloramphenicol) showed clinical improvement. Clinical improvement in the culture-positive groups was 100% (41/41) after ofloxacin treatment, and 95% (41/43) after chloramphenicol treatment. Microbiological improvement rates were similar for the two drugs: 85% (33/39) improved with ofloxacin, and 88% (38/43) improved with chloramphenicol. Both drugs were well tolerated. Adverse reactions possibly due to the study medication occurred in 1% (1/89) of those who received ofloxacin, and in 4% (4/93) of those who received chloramphenicol.

Bacterial infection of the outer eye is common, but there is a limited range of antimicrobial agents available for topical therapy. The search for new agents is influenced by the emergence of resistant bacterial strains to some topical preparations and by considerations of local and systemic toxicity.

In the following study the clinical efficacy of ofloxacin, a new antibiotic, was compared with that of chloramphenicol, an agent widely used against external bacterial ocular infections. This comparison was undertaken because chloramphenicol resistance has become established in several pathogens. Moreover, rare but serious reactions have been associated with topical ocular use of chloramphenicol.

Ofloxacin, a synthetic fluorinated quinolone first described in 1982, shows promise as an agent against external ocular infections. Ofloxacin is exceptionally potent against a wide range of Gram-positive and Gram-negative bacteria and obligate anaerobes. It is effective in vitro against many organisms that cause ocular infections (Table 1), for example Haemophilus influenzae, Neisseria gonorrhoeae, Staphylococcus species and Streptococcus species. Ofloxacin also acts against Pseudomonas aeruginosa, which is associated with ocular infections that are especially serious and difficult to treat.

Quinolones are bactericidal in mode of action; they specifically inhibit the bacterial DNA gyrase supercoiling function required by bacterial, but not eukaryotic cells. In vivo, ofloxacin performs better than the other fluoroquinolones with similar in vitro MIC90 values (minimum concentration that inhibits 90% of isolates in vitro).

The pharmacokinetic indications that it will be an effective topical ocular antibiotic have also been confirmed by clinical tests. Chloramphenicol, isolated from Streptomyces venezuelae in 1947, has been an effective agent against external ocular infections for about 40 years. Chloramphenicol acts by inhibiting prokaryotic protein synthesis. The action of chloramphenicol is usually bacteriostatic, but it is bactericidal against Haemophilus influenzae, Streptococcus pneumoniae, and Neisseria meningitidis.

Patients and methods
This double-masked, parallel-group, clinical trial was conducted at five sites. Selected patients with suspected bacterial ocular infection were randomly assigned either 0-3% ofloxacin or 0-5% chloramphenicol ophthalmic solution for a seven-day treatment.

Patients
Patients were screened for several conditions. Other ocular disease, contact lens wear, and use of other ophthalmic medications or of systemic antibiotics were grounds for exclusion. Patients sensitive to chloramphenicol or to any quinolone were excluded. Those with uncontrolled systemic disease and pregnant or nursing women were not enrolled. Informed consent was obtained from all enrolled patients.

SCHEDULE OF VISITS AND MEASUREMENTS
Symptoms were assessed by an ophthalmic examination (best corrected visual acuity, slit-lamp biomicroscopy, and ophthalmoscopy) at visit 1 (day 1), visit 2 (days 3–5), and visit 3 (day 8). On day 1 ocular cultures were obtained from

<table>
<thead>
<tr>
<th>Organism (no)</th>
<th>MIC (µg/ml)</th>
<th>Oflloxacin</th>
<th>Gentamicin</th>
<th>Tobramycin</th>
<th>Chloramphenicol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haemophilus influenzae (18)</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Pseudomonas aeruginosa (68)</td>
<td>4</td>
<td>8</td>
<td>44</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>Staphylococcus aureus (79)</td>
<td>0-5</td>
<td>1</td>
<td>16</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Staphylococcus epidermidis (68)</td>
<td>0-5</td>
<td>32</td>
<td>64</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Streptococcus pneumoniae (21)</td>
<td>2</td>
<td>7</td>
<td>16</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
all patients as described below. Investigators applied the first drug dose, and patients were instructed to use their eye drops every 2–4 waking hours (according to severity as determined by the physician) on days 1 and 2 four times daily on days 3 through 7, and to stop treatment at least 12 hours before visit 3 on day 8.

Symptoms and drug tolerance were evaluated at visits 2 and 3. A second ocular culture was taken on visit 3 from patients whose first culture had given a positive result.

MICROBIOLOGICAL METHODS

Ocular cultures were obtained by rolling the tip of a calcium alginate swab, moistened with sterile unpreserved saline, along the lid margin and conjunctival cul-de-sac of each affected eye. After the culture sample was obtained, each swab was placed in a sterile tube containing 1-0 ml of transport dissolving buffer solution (sodium citrate [dihydrate], sodium chloride, sodium acetate [trihydrate], potassium chloride, calcium chloride [dihydrate], magnesium chloride [hexahydrate], hydrochloric acid, sodium hydroxide, and purified water) and delivered to the microbiological laboratory within 4 hours for quantitative analysis.

On arrival at the laboratory the transport tube was vortexed until the swab fibres were finely dispersed. A sample of the suspension was directly plated on to a 5% horse blood agar plate (BAP) and a chocolate agar plate (CAP). A 1:10 dilution of the sample was prepared in sterile trypticase soy broth and also plated onto BAP and CAP. All sample plates were incubated for 48 hours at 37°C in 4% CO₂. Colony-forming units were counted, bacteria identified, and sensitivity tests to ofloxacin and chloramphenicol were performed.

MICROBIOLOGICAL IMPROVEMENT

Classification of cultures as positive or negative followed the methods and classification of bacterial thresholds of Cable et al.20-21 A culture was considered positive if the colony count exceeded the threshold for any bacterial class. For class A, the most virulent ocular pathogens (group A streptococci, other β-haemolytic streptococci, S. pneumoniae, all Gram-negative rods and Neisseria species), the threshold was above zero colony-forming units. For class B, α-haemolytic streptococci (other than S. pneumoniae), Staphylococcus aureus, micrococci, and Branhamella catarrhalis, the threshold was more than 10. For class C other Staphylococcus species (including Staphylococcus epidermidis) and Bacillus species, the threshold was more than 100. The threshold of class D, Corynebacterium species, was more than 10 000 colony-forming units.

Either eradication (zero colonies) or control of bacteria at visit 3 was scored as microbiological improvement. Bacteria were considered controlled if the colony count dropped below threshold values.

CLINICAL IMPROVEMENT AND SAFETY

Clinical improvement was defined as a decline in symptoms of external ocular infection. The composite severity score (CSS) of 10 factors (lid erythema, oedema and crustling, palpebral and bulbar conjunctival hyperaemia, conjunctival oedema and discharge, corneal oedema, foreign body sensation, and pain) was determined for all patients. Biomicroscopy and symptoms were graded 0 for none, 1 for mild, 2 for moderate, and 3 for severe.

Drug comfort was determined from reported irritation or pain following use of the drug. Safety was assessed by reported adverse reactions and by comparing visual acuity, lens pathology and ophtalmoscopy before and after treatment.

OVERALL IMPROVEMENT

Overall improvement, defined as showing both microbiological and clinical improvement at visit 3, was determined for initially culture-positive patients.

STATISTICAL ANALYSES

Clinical, microbiological and overall improvement rates were compared by the Cochrane-Mantel-Haenszel (CMH) test stratified by the investigator. The CSS of the treatment groups was compared by a two-way analysis of variance. For all analyses a p value less than or equal to 0.05 was considered statistically significant.

Results

A total of 167 patients with suspected bacterial eye infections were enrolled for clinical efficacy and safety evaluations. Age ranged from 19 to 81. On visit 1, 83 patients received ofloxacin, 84 received chloramphenicol. Treatment groups did not differ significantly in age, race, sex, iris colour, medical or ophthalmic history.

The frequencies of each diagnosis were the same in both treatment groups. Two conditions accounted for most cases. In the culture-positive group (Fig 1), conjunctivitis was diagnosed in 63% (53/84) of the patients, and blepharokeratoconjunctivitis in another 20% (17/84). The remaining diagnoses were distributed among the following: blepharitis, blepharokeratoconjunctivitis, and keratoconjunctivitis. Two diagnoses were not recorded.
Ofloxacin compared with chloramphenicol in the management of external ocular infections

100

Streptococcus epidermidis
Staphylococcus aureus

2
chloramphenicol
Table

The microbiological isolates
The culture-positive group comprised 84 patients who were microbiologically positive on day 1. Culture records were completed for 39 of 41 culture-positive patients assigned ofloxacin, and for all 43 patients assigned chloramphenicol. Of 32 Gram-negative organisms isolated from ocular cultures on day 1 none was resistant to ofloxacin, but one was resistant to chloramphenicol. Of 152 Gram-positive organisms tested, one was resistant to ofloxacin, and four were resistant to chloramphenicol.

IMPROVEMENT IN CULTURE-POSITIVE GROUP
High improvement rates were obtained with both drugs. No statistically or clinically significant differences were found between treatments in microbiological, clinical, or overall improvement rates of the initial culture-positive group (Fig 2).

Microbiological improvement rates were 85% (33/39) for ofloxacin, and 88% (38/43) for chloramphenicol. Bacteria were eradicated by visit 3 in 79% (31/39) of patients given ofloxacin and in 77% (33/43) of those given chloramphenicol.

The two drugs were similarly effective against all bacterial genera and threshold classes encountered in this trial. For conjunctivitis due to common causative organisms the microbiological improvement rates are shown in Table 2.

Clinical improvement rates were 100% (41/41) for ofloxacin, and 95% (41/43) for chloramphenicol. Among patients with conjunctivitis clinical improvement rates were 100% (27/27) for ofloxacin treatment, and 96% (25/26) for chloramphenicol treatment.

Overall improvement rates were 85% (33/39) and 84% (36/43) for ofloxacin and chloramphenicol, respectively. Overall improvement in culture-positive patients with conjunctivitis was 88% (22/25) for ofloxacin treatment and 85% (22/26) for chloramphenicol treatment.

In six of the 11 unimproved patients the bacteria present on day 8 were not present on day 1. Among those using chloramphenicol different species were present in 5% (2/43) (Staphylococcus capitis; Staphylococcus epidermidis) at visit 3. New organisms were present in 10% (4/39) of those using ofloxacin (Micrococcus sp., Staphylococcus epidermidis, α-haemolytic streptococci, and Staphylococcus aureus). In five unimproved patients the same bacteria increased above counts on day 1 in 13% (5/39) of patients treated with ofloxacin and in 9% (4/43) of those treated with chloramphenicol.

Table 2 The microbiological improvement rates of patients after treatment with ofloxacin and chloramphenicol against organisms commonly associated with conjunctivitis

<table>
<thead>
<tr>
<th>Organism</th>
<th>Ofloxacin</th>
<th>Chloramphenicol</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% of patients</td>
<td>% of patients</td>
</tr>
<tr>
<td>Haemophilus influenzae</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>96</td>
<td>87</td>
</tr>
<tr>
<td>Staphylococcus epidermidis</td>
<td>88</td>
<td>94</td>
</tr>
<tr>
<td>Streptococcus sp.</td>
<td>92</td>
<td>100</td>
</tr>
</tbody>
</table>

Biodiscography, Symptoms and Safety - All Patients
For all 167 patients there were no notable differences between treatment groups at day 1. CCS declined after treatment with both drugs, and no significant difference in any symptom was present at visit 3. No significant changes were detected by ophthalmoscopy during the study. No changes in visual acuity were correlated with any observed biomicroscopy changes.

There was no significant difference between groups in adverse reactions. Of 83 patients receiving ofloxacin, one reported a reaction described as haemorrhagic conjunctivitis and marked palpebral oedema which may have been drug induced. Four of 84 patients who received chloramphenicol left the study after various complaints (for example, atopic reaction; stinging and eye soreness; headache; lip ulceration) which were judged to be possibly due to the study medication. These five patients were discontinued from the clinical trial, and were not rechallenged with the study medication.

Discussion
The development of novel anti-infective agents is required by the evolution of bacterial drug resistance because the effectiveness of any anti-biotic can be impaired by resistant pathogens. The relative effectiveness and safety of alternative treatments must be considered in choosing any course of therapy, but a comparison of effectiveness and risk of side effects is especially important in evaluating the potential of a new therapeutic agent.

Chloramphenicol is a potent, broad-spectrum antibiotic, and is still widely prescribed for external ocular infections. Unfortunately two factors threaten to erode its usefulness: the appearance of resistant bacterial pathogens, and the recognition of sometimes serious side effects associated with chloramphenicol therapy. The imminent need for alternative treatments notwithstanding, a prospectively replacement must
match the high performance of chloramphenicol while posing fewer risks.

Our study confirms that ofloxacin is a safe new antimicrobial agent effective in treating external ocular infection. Ofloxacin performed as well as chloramphenicol in promoting microbiological, clinical, and overall improvement in patients with bacterial eye infections (Fig 2). Ofloxacin eradicated or controlled infection in 79% (31/39) of culture-positive patients compared with 76% (38/43) for chloramphenicol.

In vitro studies indicate that both ofloxacin and chloramphenicol are broad spectrum antibiotics. However, the MIC90 (minimum concentration that inhibits 90% of isolates in vitro) of ofloxacin is substantially lower than that of chloramphenicol for several important ocular pathogens. In fact, _P. aeruginosa_, a dangerous Class A pathogen, is considered insensitive to chloramphenicol treatment. The MIC90 for ofloxacin is 4μg/ml compared with 128μg/ml for chloramphenicol against _P. aeruginosa_. The MIC90 was 0.5μg/ml for ofloxacin against both _S. aureus_ and _S. epidermidis_, whereas the respective values were 16μg/ml and 32μg/ml for chloramphenicol.

Chloramphenicol resistance occurs in many pathogenic species, including _H. influenzae_ and _S. pneumoniae_. High frequencies of resistance, ranging from 30% to 58% of clinical isolates, have been observed. The potential for rapid spread of chloramphenicol resistance is high because plasmid-borne factors exist, and conjugative transfer of the plasmid occurs. In contrast, ofloxacin-resistant strains seldom arise, and the development of plasmid-borne resistance is viewed as unlikely. Moreover, ofloxacin-resistant strains are typically slow growing and so unsteady that they fail to compete with sensitive strains or revertants under ofloxacin-free conditions. Though the 184 isolates sampled in this study did not differ significantly in their resistance to the drugs, five were insensitive to chloramphenicol, and one was insensitive to ofloxacin in vitro.

Along with efficacy safety is of primary importance in comparing drug treatment. Chloramphenicol can cause rare, but serious, blood dyscrasias, and fatal aplastic anaemia occurs in about 1 in 40,000 courses of systemic chloramphenicol therapy. Topical ocular use of chloramphenicol has also resulted in blood dyscrasias and deaths from aplastic anaemia, an idiosyncratic reaction that is independent of dose. Adverse reactions to systemic ofloxacin occur at low rates of 2% to 7% of treated patients. Clinical studies of 15,962 patients yielded about four adverse reactions per 100 patients who were administered an oral form of ofloxacin; such reactions were typically mild gastrointestinal complaints or minor nervous symptoms. A low frequency, 0-5% (38/7,566), of adverse reactions to an ophthalmic ofloxacin preparation was found in a post-marketing study completed in 1989 by Santen Corp., Japan (communicated to Allergan Inc.).

Ofloxacin possesses outstanding potency against a variety of pathogens, and is active against strains resistant to chloramphenicol and other antibiotics. In comparing the utility of ofloxacin to that of chloramphenicol we must also consider the side effects of both drugs. Ofloxacin has negligible side effects when administered orally or topically. However, the risks associated with chloramphenicol have led some authors to suggest using this antibiotic only when other agents fail. In considering effectiveness and safety, the clinical equivalence of ofloxacin compared with chloramphenicol has significance for the management of external bacterial ocular infections.

Funding for this study was provided by a grant from Allergan, Inc.


43 Feder HM. Chloramphenicol: what we have learned in the last decade. *South Med J* 1986; 79: 1129-34.

Ofloxacin compared with chloramphenicol in the management of external ocular infection.


doi: 10.1136/bjo.75.11.675

Updated information and services can be found at:
http://bjo.bmj.com/content/75/11/675

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/