Identifying anterior segment crystals

I W J Hurley, A M V Brooks, D P Reinehr, G B Grant, W E Gillies

Abstract
A series of 22 patients with crystals in the anterior segment of the eye was examined by specular microscopy. Of 10 patients with hypermature cataract and hyperrefringent bodies in the anterior chamber cholesterol crystals were identified in four patients and in six of the 10 in whom aspirate was obtained cholesterol crystals were demonstrated in three, two of these having shown crystals on specular microscopy. In 10 patients with intraocular crystalline deposits, cholesterol crystals were found on specular microscopy, including one case of Schnyder's crystalline corneal dystrophy. Of two patients with multiple myeloma, corneal crystals were demonstrated in one. Crystals of the anterior segment of the eye are most likely to be cholesterol, and identification is important for future treatment.

Diagnosis of the nature of crystalline deposits seen in the anterior segment of the eye may form the basis of treatment. Though uncommon, crystalline deposits may occur in a wide variety of conditions and it is important to differentiate those associated with a variety of general medical conditions from those occurring in local corneal disease, such as old corneal scarring, or those associated with the recently described infectious crystalline keratopathy.

We have studied a series of patients who presented with crystalline deposits in the cornea and in the anterior chamber of the eye, identifying these crystals by specular microscopy and also by light microscopy when an aspirate from the anterior chamber could be obtained. The value of these findings in the diagnosis of the underlying condition is discussed.

Materials and methods
A series of 22 patients were studied with various types of crystal in the anterior segment. Ten patients, six males and four females, mean age 71 (SEM 5) years, range 44 to 84 years, had crystals in the anterior chamber associated with a hypermature cataract. Another 12 patients, three males and nine females, aged 64 (SEM 4) years, range 42 to 83 years, were examined for crystalline deposits in the cornea, including two patients with multiple myeloma.

Specular microscopy was performed with the wide-field Pocklington contact specular microscope (Konan Camera Research Inc, Hyogo, Japan) after the instillation of topical oxybuprocaine hydrochloride 0.4% (Benoxinate), without a contact lens. Conventional and relief mode specular microscopy pictures were obtained by our previously described technique. The relief mode enables the observer to view the changes taking place on the posterior surface of the corneal endothelium. Photographs were taken of the central cornea and also above, below, and to either side in an extensive pattern. A Minolta XD-5 camera with data back was attached to the specular microscope. Kodak Tri-X 135 film was used and developed in D 76 developer for 13 minutes at 23°C. Corneal deposits were examined by coming forward to focus on these deposits at various levels in the corneal stroma. Crystals in the anterior chamber could be demonstrated by focusing back into the anterior chamber, which allowed visualisation of deposits on the posterior surface of the cornea as well as material circulating in the anterior chamber of the eye.

Fresh anterior chamber aspirate was obtained in six patients with hypermature cataract and phacolytic glaucoma and was examined by direct microscopy, without the use of xylol or alcohol in order to avoid dissolving the crystals.

Patients were derived from the authors’ practices or hospital outpatients seen from 1985 to 1990. Ethical approval was provided by the Research and Ethics Advisory Committee of the hospital and informed consent was obtained from all subjects.

Results
Of the 22 patients there were 10 with hypermature cataract and refractive bodies in the anterior chamber, 10 with hyperrefringent granules in the cornea, and two with multiple myeloma, one having superficial fine particulate corneal opacities. Ten patients with a hypermature cataract showed hyperrefringent granules in the anterior chamber on slit-lamp biomicroscopy (Fig 1). On specular microscopy crystals were demonstrated on the posterior corneal surface or in the anterior chamber in four of these 10 patients. These crystals had a typical rectangular appearance consistent with cholesterol crystals (Fig 2), though the notched corner typical of cholesterol could not always be

Figure 1 Slit-lamp biomicroscopy of the left eye of a 55-year-old male with a hypermature cataract shows dense exudate with hyperrefringent bodies in the anterior chamber.
Figure 2 Specular microscopy of the same eye as Figure 1 shows numerous rectangular light crystalline structures consistent with cholesterol crystals. (Bar = 100 μm.)

Figure 3 Anterior chamber aspirate from the same eye as in Figures 1 and 2. Under polarised light birefringent flat rectangular notched crystals of cholesterol are seen. (Original magnification, ×2500.)

consistent with cholesterol, though a notched corner could not always be demonstrated.

In one of the two patients with multiple myeloma numerous fine superficial corneal opacities were seen on slit-lamp biomicroscopy. Specular microscopy showed numerous light stick-like structures of uniform thickness with rounded ends arranged irregularly at angles to each other. They ranged from 1 to 4 endothelial cell diameters in length (Fig 5) and were consistent with myeloma crystals.

Discussion
Establishing the exact nature of crystalline structures in the anterior segment of the eye presents a clinical problem, as biopsy is usually not possible. Although it is possible to examine an anterior chamber aspirate, this is an invasive procedure, and identification of the crystals may be required before operation is undertaken. It may be very difficult to obtain material which can be usefully examined by corneal biopsy, especially if the deposits are deep, while specular microscopy is a simple non-invasive means of identification.

In the present cases most of the crystals were cholesterol, and these could be identified because of their regular geometric form, though a notched corner was not always apparent as the crystals could overlap each other or be seen edge on. However, some discrete crystals were usually seen, and their morphology differed from that described for the deposits of infectious crystalline keratopathy, whose exact nature is still not clearly established and whose differentiation has important treatment implications. The cholesterol crystalline deposits seen in our cases were static or only very slowly progressive and most were associated with old quiescent vascularised keratopathy of various causes, including one patient who had a corneal graft, two others with old interstitial keratitis, and one with marginal corneal degeneration with little vascularisation.

The morphology of deposits seen in our case with multiple myeloma was distinctive and different from the cholesterol deposits seen in the other cases. One report of deposits in multiple myeloma described crystalline deposits within the endoplasmic reticulum of plasma cells, another crystals in the cytoplasm of keratoctyes, while another report described needle-like elec-
Identifying anterior segment crystals

Figure 5 Specular microscopy of the left eye of a 61-year-old female with multiple myeloma showing numerous small stick-like crystalline structures lying at different angles to each other, consistent with myeloma crystals. (Bar=100 μm.)

tron-dense extracellular particles in the cornea at all levels. In our patient the numerous light stick-like structures seen on specular microscopy were up to 4 endothelial cell diameters in length, which strongly supports an extracellular location for these crystals.

Although other crystalline deposits have been described in the cornea, our experience suggests that corneal crystalline deposits are most likely to be cholesterol, as are the hyperrefrangent granules in the anterior chamber of patients with hypermature cataract. Specular microscopy may be used to identify these crystals, thus providing a basis for clinical diagnosis and subsequent management without the need for invasive biopsy.

This work was carried out under Research Projects 92 and 99 of the Royal Victorian Eye and Ear Hospital. Funded in part by Research Project 99 of the Royal Victorian Eye and Ear Hospital and in part by the Eye Ear Nose and Throat Research Institute, 126 Victoria Parade, East Melbourne, Victoria 3002, Australia.

Identifying anterior segment crystals.

I W Hurley, A M Brooks, D P Reinehr, G B Grant and W E Gillies

doi: 10.1136/bjo.75.6.329

Updated information and services can be found at:
http://bjo.bmj.com/content/75/6/329

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/