Microsporidial keratoconjunctivitis in a patient with AIDS

T W Metcalfe, R M L Doran, P L Rowlands, A Curry, C J N Lacey

Abstract
A male patient is described with acquired immune deficiency syndrome (AIDS) who developed chronic keratoconjunctivitis and chronic sinusitis due to infection with the microsporidan Encephalitozoon cuniculi. Diagnosis was confirmed by electron microscopic examination of conjunctival epithelial cells and nasal polypectomy specimens. Treatment with propamidine isethionate 0.1% (Brolene) eye drops six times daily led to a prompt resolution of the keratoconjunctivitis.

Microsporidia are small obligate, intracellular, spore forming protozoal parasites. The phylum Microspora consists of approximately 80 genera and more than 700 species. They colonise a wide range of invertebrates and vertebrates including non-human primates though until the advent of acquired immune deficiency syndrome (AIDS) had only rarely been reported in man.

Case history
A 22-year-old bisexual man was referred to the Genito-Urinary Department in 1986 having been found to be HIV antibody positive at routine screening following blood donation.

He first noticed mild ocular discomfort and blurring of vision in October 1988. His symptoms ran a chronic fluctuating course and failed to respond to several courses of topical antibiotics. He developed problems with nasal obstruction and discharge in February 1989.

He was referred to the Ophthalmology Department in June 1990. On initial examination best corrected visual acuity was 6/9 in each eye.

His conjunctiva was minimally injected with no follicular or papillary response. Both corneae were diffusely covered with fine punctate epithelial opacities the majority of which stained with fluorescein (Fig 1). There was also some punctate staining of the interpalpebral bulbar conjunctiva of both eyes. The anterior chambers and vitreous were quiet and fundal examination revealed an isolated cotton wool spot above the right macula.

Similarities between this case and recent reports from the USA of microsporidial keratoconjunctivitis in patients with AIDS were noted.

 Conjunctival scrapings were therefore taken from both eyes and sent for electron microscopic examination which established the diagnosis of Encephalitozoon cuniculi keratoconjunctivitis. Formal nasal polypectomy was performed at this time to relieve the patient’s chronic nasal obstruction. Histological specimens showed Encephalitozoon cuniculi infection of the surface epithelial cells of the nasal mucosa.

Treatment of the keratoconjunctivitis with guttate propamidine isethionate 0.1% (Brolene) six times daily was begun on an empirical basis as this agent has been shown to be effective against other classes of protozoa.

 Relief of the patient’s ocular symptoms and resolution of the punctate keratopathy with improvement of vision to 6/5 in each eye occurred within 3 weeks of commencing therapy with propamidine isethionate. Repeat electron microscopic examination of conjunctival scrapings was carried out which failed to reveal any infected cells.

After 2 months the patient stopped using propamidine isethionate eye drops and suffered a mild recurrence of his symptoms. Clinical examination revealed a recurrence of the punctate keratoconjunctivitis and further cytological studies showed reinfection of conjunctival epithelial cells with microsporidia.

Methods
 Conjunctival scrapings from both eyes and nasal...
polypectomy specimens were prepared in ultrathin sections and examined in an AEI EM801 electron microscope.

Results

The conjunctival scrapings consisted of squamous epithelial cells; no inflammatory cells were seen. In the first sample the majority of epithelial cells examined from both eyes were infected with microsporidial spores contained within membrane-bound vacuoles (Fig 2). The spores were ovoid measuring 2 \(\mu \text{m} \times 1 \text{ \mu m} \). The spore wall was 60 nm thick and comprised an outer electron dense layer (exospor) and an inner electron lucent layer (endospor). A membrane lined the endospore which in mature spores enclosed an electron dense cytoplasm. Within the cytoplasm was a single nucleus and a peripheral coiled filament which emanated from a polaroplast organelle at the anterior pole of the spore. Six or seven turns were evident in the filament (Fig 3). Extruded filaments were seen in several spores. Less mature spores were more electronlucent with fewer internal organelles. Based on these ultrastructural findings the organism was identified as *Encephalitozoon cuniculi*.

Discussion

The characteristic feature of AIDS is recurrent opportunistic infections in the presence of an impaired cellular immune system. Classes of organisms previously rarely seen and of low pathogenicity have become common and behave in a virulent manner. We report a man with AIDS with keratoconjunctivitis and sinusitis due to infection with the microsporidial parasite *Encephalitozoon cuniculi*. This is the first case of microsporidial keratoconjunctivitis in a patient with AIDS described outside the USA. Microsporidial infection of the mucosae of the nose and nasal sinuses has not previously been reported.

We found a rapid clinical improvement in this patient’s keratoconjunctivitis on commencing treatment with propamidine isethionate which was confirmed by cytological studies. We suggest that further study of this antimicrobial agent whose precise mode of action is unknown is required to assess its value in patients with microsporidial infections.

Although this form of treatment holds promise for relieving ocular symptoms in this infection the likely widespread involvement of other tissues especially respiratory mucosa provides a persistent reservoir for reinfecction.

Figure 2 Electron micrograph of a conjunctival epithelial cell containing numerous *Encephalitozoon cuniculi* spores within membrane-bound cytoplasmic vacuoles. (\(\times 5600 \).)

Figure 3 Electron micrograph of an *Encephalitozoon cuniculi* spore showing characteristic coiled filaments (arrows). (\(\times 35,000 \).)
Microsporidial keratoconjunctivitis in a patient with AIDS.

T W Metcalfe, R M Doran, P L Rowlands, A Curry and C J Lacey

Br J Ophthalmol 1992 76: 177-178
doi: 10.1136/bjo.76.3.177

Updated information and services can be found at:
http://bjo.bmj.com/content/76/3/177

These include:
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/