A comparison of the efficacy and duration of action of topically applied proxymetacaine using a novel ophthalmic delivery system versus eye drops in healthy young volunteers

J G Lawrenson, D F Edgar, A C Gudgeon, J M Burns, M Geraint, N A S Barnard

Abstract
A novel ophthalmic drug delivery system (NODS) has been developed to give precise and controlled delivery of a drug to the eye. The drug is incorporated into a polyvinyl alcohol flag attached to a carrier. When applied to the eye the flag detaches and gradually dissolves, releasing the drug. We investigated corneal anaesthesia produced by different concentrations of proxymetacaine NODS, and conventional eye drops. Subjects consisted of 28 normal male (mean age 25-3 (SD 3-9) years). Corneal touch sensitivity was measured with a biomicroscope mounted Cochet-Bonnet aesthesiometer. Each subject attended for two visits separated by 7 days. On each visit each eye randomly received one of four proxymetacaine preparations: 44 μg, 74 μg, 124 μg NODS, or 35 μl of 0-5% proxymetacaine drops (175 μg). Corneal touch sensitivity was measured before, and at 1, 2, 5, 10, 15, 20, 30, 45, and 60 minutes following instillation. Complete anaesthesia was achieved in the majority of subjects within 1 minute of instillation. The lowest NODS dose (44 μg) produced longer lasting anaesthesia than the 35 μl drop (175 μg) (p<0-05). Higher NODS doses produced a correspondingly greater increase in the duration of anaesthesia. The greater bioavailability achieved by this vehicle allows much lower drug concentrations to be used, reducing the likelihood of systemic adverse reactions.

The topical application of ophthalmic drugs is most commonly in the form of aqueous drops. These have the disadvantage of a short corneal contact time, resulting in only a small amount of the drug passing into the eye. The majority is quickly removed via the nasolacrimal duct, with subsequent systemic absorption.

A novel ophthalmic drug delivery system (NODS, Smith and Nephew Pharmaceuticals Ltd) has been developed which delivers a precise amount of drug to the eye. The drug is incorporated into a soluble polyvinyl alcohol (PVA) flag. This is attached to a water soluble handle film via a thin soluble membrane (Fig 1). When this unit is placed in the lower fornix the segment containing the drug detaches from the carrier and gradually dissolves, releasing the drug. This delivery system produces a longer corneal contact time, resulting in greater bioavailability compared with conventional eye-

Figure 1 A diagrammatic representation of NODS – a novel ophthalmic delivery system. The drug is contained within the medicated flag which becomes detached from the carrier after the membrane film dissolves in the conjunctival sac.

The sensitivity of the drug delivery system was measured using a Cochet-Bonnet aesthesiometer, which has become the standard instrument for both clinical practice and research. Using this instrument, touch thresholds have been shown to vary with age, corneal eccentricity, time of day, menstrual cycle, and contact lens wear. In an effort to minimise the variability associated with these factors the same para-central corneal location was used for all subjects, who were all young males, none of whom were contact lens wearers.

Two versions of the Cochet-Bonnet aesthesiometer were used to measure the touch sensitivity of a para-central corneal location. One aesthesiometer incorporated a 0-08 mm diameter nylon monofilament, covering a range of 2-90 mg/0-005 mm², and the other a 0-12 mm filament diameter with a range of 11-145 mg/0-0113 mm². The aesthesiometer was attached to a slit-lamp biomicroscope using a mount which allows precise control of filament orientation. The filament tip, held in constant focus through the

Handle paper
Handle film
Medicated flag
(not to scale)
Membrane film
The percentage of subjects achieving total anaesthesia v time following drug instillation (minutes).

Time after instillation (minutes)
Percentage of subjects achieving total anaesthesia

44 µg NODS
74 µg NODS
124 µg NODS
35 µl of 0.5% eyedrops (175 µg)

Figure 2

viewing system of the slit-lamp, approached the cornea both smoothly and perpendicularly. Corneal contact was detected by the smallest visible bending of the nylon. The filament length was reduced from its maximum in 0.5 cm steps until the subject responded that the stimulus had been felt. The corneal touch threshold was taken as the maximum length of nylon which gave a 50% positive response from at least four applications. A number of ‘dummy runs’, in which the filament did not make contact were included to test subject reliability.

The four proxymetacaine preparations investigated were 35 µl of 0.5% eye drops (175 µg) (Opthaine, E R Squibb and Sons Ltd), and three NODS doses (44, 74, and 124 µg) (Smith and Nephew Pharmaceuticals Ltd). Each subject attended on two occasions, separated by at least 7 days. On each visit each eye received one of the four preparations, randomised according to a 4×4 latin square design. To take account of the diurnal variation in corneal touch sensitivity both visits were at the same time of day.

On each visit the baseline sensitivity of the same paracentral corneal location was recorded. Following the instillation of a masked NODS dose or 35 µl of 0.5% proxymetacaine (delivered from a micropipette), sensitivity was measured with either the 0.08 or 0.12 mm diameter filament, as necessary, at 1, 2, 5, 10, 15, 20, 30, 45, and 60 minutes, and every 15 minutes thereafter until the touch sensitivity was restored to its baseline value. The procedure was then repeated for the second eye.

Corneal integrity was checked using the slit-lamp biomicroscope at the end of each session, and at a follow up appointment the next day.

Statistical analysis
In analysing the data the proportion of subjects achieving total anaesthesia for each NODS was compared with the proportion for the eyedrop (positive control) at each time point using McNemar’s test.

Results
For the purpose of this study total anaesthesia was assumed when there was no subjective touch sensitivity to a 1 cm length of the 0.12 mm diameter filament. For each preparation the onset of anaesthesia was extremely rapid. This was followed by a variable interval of maximal anaesthesia, with a gradual restoration of full sensitivity (Fig 2).

In three out of a total of 84 separate NODS instillations complete anaesthesia was not achieved, and there was a rapid return to baseline sensitivity. These anomalies were included in the statistical analysis, and account for the fact that full anaesthesia was not achieved by 100% of subjects for both the 44 µg and 124 µg NODS (Fig 2).

The results of the statistical analysis are summarised in Table 1. At 10 minutes following drug instillation only the 74 µg NODS was significantly different from the eyedrop (p<0.05). All NODS doses were significantly different from the drop at 15 and 20 minutes (p<0.05), and after 30 minutes a significant difference was found for the 74 and 124 µg preparations. All comparisons made before 10 minutes and at time intervals in excess of 30 minutes were not significant (p>0.05).

No adverse corneal or systemic reaction was observed with any of the preparations used.

Discussion
Ideally a topical local anaesthetic should produce a rapid onset of anaesthesia, and a sufficient duration of action to perform the particular procedure – for example, tonometry or foreign body removal, followed by a rapid return to full sensitivity. In drug development, the lowest concentration of an anaesthetic agent is selected which is consistent with these requirements. The present study compared the time course of corneal anaesthesia induced by different concentrations of proxymetacaine, either in the form of NODS or as conventional eye drops.

All proxymetacaine preparations produced little or no stinging on instillation and were well tolerated by all subjects. In the vast majority of subjects complete anaesthesia was achieved for all four preparations within 1 minute of instillation. All NODS produced longer lasting anaesthesia than the eyedrop which incorporated a higher drug concentration (for example, the 44 µg unit contained a quarter of the 175 µg dose in the 35 µl eyedrop). The greater bioavailability achieved by this vehicle, by virtue of the sustained release of proxymetacaine from the PVA flag, allows much lower drug concentra-

Table 1 Results of McNemar’s test. The test compared the proportion of subjects achieving total anaesthesia for the eyedrop with the proportion for NODS at time intervals following drug instillation. The confidence limits refer to the difference between proportions

<table>
<thead>
<tr>
<th>Minutes</th>
<th>Comparison</th>
<th>NODS (µg)</th>
<th>Eyedrop (µg)</th>
<th>Difference in proportions</th>
<th>Confidence limits</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Eyedrop = 74 µg NODS</td>
<td>0.00</td>
<td>0.79</td>
<td>0.21</td>
<td>0.06 to 0.37</td>
<td>0.04</td>
</tr>
<tr>
<td>15</td>
<td>Eyedrop = 124 µg NODS</td>
<td>0.96</td>
<td>0.32</td>
<td>0.64</td>
<td>0.47 to 0.82</td>
<td><0.0001</td>
</tr>
<tr>
<td>15</td>
<td>Eyedrop = 44 µg NODS</td>
<td>0.68</td>
<td>0.32</td>
<td>0.36</td>
<td>0.13 to 0.58</td>
<td>0.02</td>
</tr>
<tr>
<td>15</td>
<td>Eyedrop = 74 µg NODS</td>
<td>0.93</td>
<td>0.32</td>
<td>0.61</td>
<td>0.43 to 0.79</td>
<td>0.0001</td>
</tr>
<tr>
<td>20</td>
<td>Eyedrop = 124 µg NODS</td>
<td>0.89</td>
<td>0.34</td>
<td>0.55</td>
<td>0.73 to 0.99</td>
<td><0.001</td>
</tr>
<tr>
<td>20</td>
<td>Eyedrop = 44 µg NODS</td>
<td>0.32</td>
<td>0.32</td>
<td>0.00</td>
<td>0.12 to 0.45</td>
<td>0.01</td>
</tr>
<tr>
<td>20</td>
<td>Eyedrop = 74 µg NODS</td>
<td>0.75</td>
<td>0.46</td>
<td>0.29</td>
<td>0.55 to 0.88</td>
<td><0.0001</td>
</tr>
<tr>
<td>30</td>
<td>Eyedrop = 124 µg NODS</td>
<td>0.25</td>
<td>0.35</td>
<td>0.10</td>
<td>0.09 to 0.41</td>
<td>0.02</td>
</tr>
<tr>
<td>30</td>
<td>Eyedrop = 74 µg NODS</td>
<td>0.21</td>
<td>0.60</td>
<td>0.39</td>
<td>0.06 to 0.37</td>
<td>0.04</td>
</tr>
</tbody>
</table>
A comparison of the efficacy and duration of action of proxymetacaine applied using NODS or eye drops

5 Barnard NAS. The aesthesiometer as a slit lamp biomicroscope attachment. Optometry Today 1991; May: 12-3.

7 O’Connor-Davies PH. The actions and uses of ophthalmic drugs. 2nd ed. London: Butterworths, 1981.

A comparison of the efficacy and duration of action of topically applied proxymetacaine using a novel ophthalmic delivery system versus eye drops in healthy young volunteers.

J G Lawrenson, D F Edgar, A C Gudgeon, J M Burns, M Geraint and N A Barnard

Br J Ophthalmol 1993 77: 713-715
doi: 10.1136/bjo.77.11.713

Updated information and services can be found at:
http://bjo.bmj.com/content/77/11/713

Email alerting service

These include:
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/