Role of mitomycin C in pterygium surgery

P S Mahar, G E Nwokora

Abstract
Mitomycin C in the form of eye drops in a concentration of 0.4 mg/ml (0-04%) was used as adjunctive treatment for primary and recurrent pterygium after surgical excision. The study was concurrent in nature and consisted of 32 pterygia in 30 patients and was done over a period of 36 months. The object was to observe the effect of mitomycin C drops on pterygium recurrence after surgical excision. Fifteen eyes of 15 patients were treated with 'bare sclera technique' for pterygium excision. Nine patients showed recurrence occurring within first 6 months of surgery. On the other hand 17 eyes of 15 patients after bare sclera pterygium excision received mitomycin 0.4 mg/ml (0-04%) eye drops four times a day for 2 weeks from first postoperative day. There was no recurrence of pterygium in this group. Follow up time for these cases ranged from 13-19 months.

(Pert halmology 1993; 77: 433-435)

Pterygium occurs all over the world but it is more common in subtropical and tropical areas. It is one of the common corneal disorders seen in Saudi Arabia. The stimulus which causes a pterygium to grow is excessive exposure to ultraviolet sunlight. Other agents that give rise to chronic irritation of the conjunctiva such as air pollution, dust, and wind have also been mentioned as determining factors.

Treatment of choice for pterygium is surgical excision. However, the recurrence rate of pterygium after excision is quite high (30-50%) unless something is done at the time of excision.

The use of postoperative β irradiation1-11 has been reported to lower the incidence of recurrence to less than 5% but has led to further complications such as scleral ulceration and cataract formation. It also requires special centres and management for referring such patients.

Argon laser has been used to control very early blood vessel growth in the sclera and limbus to prevent pterygium recurrence following surgery.12

Though in the past many workers have shown good results with use of topical thiotepa (triethylene thiophosphoramid),13-16 a radio-mimetic alkylating agent, one of the problems that occurs in darkly pigmented patients is depigmentation of the lids.

Conjunctival autograft transplantation has been used successfully by some workers17-18 after pterygium excision to reduce the incidence of recurrence. But our local experience with free conjunctival grafts from the superotemporal bulbar conjunctiva of the same eye to resurface the exposed sclera has been disappointing (ongoing study). This also requires special equipment and is carried out under retrobulbar anaesthetic block, making patients vulnerable to complications associated with such procedures.

Encouraged by the results shown by Japanese and other workers,11,19 we undertook this concurrent study of mitomycin C 0.4 mg/ml (0-04%) drops used four times a day from first postoperative day for 2 weeks after pterygium excision by the bare sclera technique to determine its effect on pterygium recurrence. To the best of our knowledge this is the first study to be published from a country where pterygium is such an endemic problem.

Materials and methods
Patients attending the outpatient clinic with pterygium requiring surgery were allocated to two groups at random.

GROUP I
Patients in this group were operated on by the bare sclera technique. After preparing and draping the eye in normal sterile fashion, the lids were opened using a rigid eye speculum. Surface anaesthesia was achieved with 1% amethocaine drops. Lignocaine, 0.2 ml of a 2% solution, with 1:100 000 adrenaline was injected into the pterygium to elevate it into its attachment to the cornea. The head of the pterygium was grasped with St Martin’s toothed forceps and excision was begun with a No 15 Bard-Parker blade about 0.5 mm ahead of the pterygium and carried down clearly to the limbus. The conjunctiva and subconjunctival tissue were then cleaned over the sclera towards the insertion of the medial rectus muscle and triangular excision of the pterygium and conjunctiva was carried out. Haemostasis was assured with light bipolar cautery. No conjunctival sutures were used. Postoperatively patients received Maxitrol ointment 3-4 times a day for 3-4 weeks. Surgery was carried out under an operating microscope.

GROUP II
Patients in this group were also operated on by the bare sclera technique, but postoperatively they received mitomycin C eye drops 0.4 mg/ml (0-04%) one drop four times a day for 2 weeks along with Maxitrol eye ointment.

The division of patients was done at random irrespective of age and sex. All patients were local nationals, other nationalities were excluded from the study.

Fifteen patients were allocated to each group. The first surgical procedure was performed in August 1988 and last one in November 1990. Total follow up time was from 3 months to 36 months.
months. All patients were examined post-operatively at 1 week, 2 weeks, 1 month, and later at 2 to 3 month intervals. Recurrence was considered if fibrovascular growth of a similar nature to that present pre-operatively took place, or if significant conjunctival vascularisation causing cosmetic blemish occurred.

All patients were examined by slit-lamp biomicroscopy with charting of visual acuity pre-

Table 1 Series of patients treated with the bare sclera technique only

<table>
<thead>
<tr>
<th>No</th>
<th>Age</th>
<th>Sex</th>
<th>Eye</th>
<th>Nature</th>
<th>V/A</th>
<th>Procedure</th>
<th>V/A</th>
<th>Complications</th>
<th>Recurrence</th>
<th>Follow up (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>48</td>
<td>M</td>
<td>LE</td>
<td>Primary</td>
<td>6/6</td>
<td>Excision + Maxitrol Excision + postop Mitomycin</td>
<td>6/6</td>
<td>Nil</td>
<td>No</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>32</td>
<td>M</td>
<td>RE</td>
<td>Primary</td>
<td>6/6</td>
<td>Excision + postop Mitomycin</td>
<td>6/6</td>
<td>Nil</td>
<td>Yes</td>
<td>17 (failed to attend in between)</td>
</tr>
<tr>
<td>3</td>
<td>50</td>
<td>M</td>
<td>RE</td>
<td>Primary</td>
<td>6/9</td>
<td>Excision + postop Mitomycin</td>
<td>6/9</td>
<td>Nil</td>
<td>Yes</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>M</td>
<td>LE</td>
<td>Recurrent</td>
<td>6/9</td>
<td>Excision + postop Mitomycin</td>
<td>6/9</td>
<td>Nil</td>
<td>Yes</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>35</td>
<td>M</td>
<td>LE</td>
<td>Primary</td>
<td>6/6</td>
<td>Excision + postop Mitomycin</td>
<td>6/6</td>
<td>Nil</td>
<td>Yes</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>50</td>
<td>M</td>
<td>LE</td>
<td>Primary</td>
<td>6/9</td>
<td>Excision + postop Mitomycin</td>
<td>6/9</td>
<td>Nil</td>
<td>Yes</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>45</td>
<td>M</td>
<td>RE</td>
<td>Primary</td>
<td>6/9</td>
<td>Excision + postop Mitomycin</td>
<td>6/9</td>
<td>Nil</td>
<td>Yes</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>46</td>
<td>M</td>
<td>LE</td>
<td>Primary</td>
<td>6/6</td>
<td>Excision + postop Mitomycin</td>
<td>6/6</td>
<td>Nil</td>
<td>Yes</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>36</td>
<td>M</td>
<td>RE</td>
<td>Primary</td>
<td>6/6</td>
<td>Excision + postop Mitomycin</td>
<td>6/6</td>
<td>Nil</td>
<td>No</td>
<td>30</td>
</tr>
<tr>
<td>10</td>
<td>19</td>
<td>M</td>
<td>LE</td>
<td>Primary</td>
<td>6/6</td>
<td>Excision + postop Mitomycin</td>
<td>6/6</td>
<td>Nil</td>
<td>Yes</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>32</td>
<td>M</td>
<td>RE</td>
<td>Primary</td>
<td>6/6</td>
<td>Excision + postop Mitomycin</td>
<td>6/6</td>
<td>Nil</td>
<td>No</td>
<td>21</td>
</tr>
<tr>
<td>12</td>
<td>45</td>
<td>M</td>
<td>RE</td>
<td>Primary</td>
<td>6/6</td>
<td>Excision + postop Mitomycin</td>
<td>6/6</td>
<td>Nil</td>
<td>No</td>
<td>30</td>
</tr>
<tr>
<td>13</td>
<td>30</td>
<td>M</td>
<td>RE</td>
<td>Primary</td>
<td>6/6</td>
<td>Excision + postop Mitomycin</td>
<td>6/6</td>
<td>Nil</td>
<td>No</td>
<td>36</td>
</tr>
<tr>
<td>14</td>
<td>40</td>
<td>M</td>
<td>RE</td>
<td>Primary</td>
<td>6/6</td>
<td>Excision + postop Mitomycin</td>
<td>6/6</td>
<td>Nil</td>
<td>No</td>
<td>30</td>
</tr>
<tr>
<td>15</td>
<td>45</td>
<td>M</td>
<td>RE</td>
<td>Primary</td>
<td>6/6</td>
<td>Excision + postop Mitomycin</td>
<td>6/6</td>
<td>Nil</td>
<td>Yes</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 2 Series of patients receiving postoperative mitomycin

<table>
<thead>
<tr>
<th>No</th>
<th>Age</th>
<th>Sex</th>
<th>Eye</th>
<th>Nature</th>
<th>V/A</th>
<th>Procedure</th>
<th>V/A</th>
<th>Complications</th>
<th>Recurrence</th>
<th>Follow up (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>49</td>
<td>M</td>
<td>BE</td>
<td>Recurrent</td>
<td>6/6</td>
<td>Excision + Maxitrol + mitomycin</td>
<td>6/6</td>
<td>BE</td>
<td>Nil</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>40</td>
<td>M</td>
<td>LE</td>
<td>Recurrent</td>
<td>6/6</td>
<td>Excision + Maxitrol + mitomycin</td>
<td>6/6</td>
<td>LE</td>
<td>Nil</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>24</td>
<td>M</td>
<td>LE</td>
<td>Recurrent</td>
<td>6/6</td>
<td>Excision + Maxitrol + mitomycin</td>
<td>6/6</td>
<td>LE</td>
<td>Nil</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>29</td>
<td>M</td>
<td>LE</td>
<td>Primary</td>
<td>6/6</td>
<td>Excision + Maxitrol + mitomycin</td>
<td>6/6</td>
<td>LE</td>
<td>Nil</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>53</td>
<td>M</td>
<td>BE</td>
<td>Primary</td>
<td>6/6</td>
<td>Excision + Maxitrol + mitomycin</td>
<td>6/6</td>
<td>BE</td>
<td>Nil</td>
<td>No</td>
</tr>
<tr>
<td>6</td>
<td>25</td>
<td>M</td>
<td>RE</td>
<td>Primary</td>
<td>6/6</td>
<td>Excision + Maxitrol + mitomycin</td>
<td>6/6</td>
<td>RE</td>
<td>Nil</td>
<td>No</td>
</tr>
<tr>
<td>7</td>
<td>50</td>
<td>M</td>
<td>RE</td>
<td>Primary</td>
<td>6/6</td>
<td>Excision + Maxitrol + mitomycin</td>
<td>6/6</td>
<td>RE</td>
<td>Mitomycin stopped after 1 week</td>
<td>No</td>
</tr>
<tr>
<td>8</td>
<td>50</td>
<td>F</td>
<td>RE</td>
<td>Primary</td>
<td>6/12</td>
<td>Excision + Maxitrol + mitomycin</td>
<td>6/12</td>
<td>RE</td>
<td>Nil</td>
<td>No</td>
</tr>
<tr>
<td>9</td>
<td>50</td>
<td>M</td>
<td>RE</td>
<td>Primary</td>
<td>6/9</td>
<td>Excision + Maxitrol + mitomycin</td>
<td>6/9</td>
<td>RE</td>
<td>Nil</td>
<td>No</td>
</tr>
<tr>
<td>10</td>
<td>25</td>
<td>M</td>
<td>RE</td>
<td>Primary</td>
<td>6/6</td>
<td>Excision + Maxitrol + mitomycin</td>
<td>6/6</td>
<td>RE</td>
<td>Nil</td>
<td>No</td>
</tr>
<tr>
<td>11</td>
<td>41</td>
<td>M</td>
<td>LE</td>
<td>Primary</td>
<td>6/9</td>
<td>Excision + Maxitrol + mitomycin</td>
<td>6/9</td>
<td>LE</td>
<td>Nil</td>
<td>No</td>
</tr>
<tr>
<td>12</td>
<td>37</td>
<td>F</td>
<td>LE</td>
<td>Primary</td>
<td>6/6</td>
<td>Excision + Maxitrol + mitomycin</td>
<td>6/6</td>
<td>LE</td>
<td>Nil</td>
<td>No</td>
</tr>
<tr>
<td>13</td>
<td>34</td>
<td>M</td>
<td>RE</td>
<td>Primary</td>
<td>6/6</td>
<td>Excision + Maxitrol + mitomycin</td>
<td>6/6</td>
<td>RE</td>
<td>Nil</td>
<td>No</td>
</tr>
<tr>
<td>14</td>
<td>31</td>
<td>M</td>
<td>LE</td>
<td>Primary</td>
<td>6/6</td>
<td>Excision + Maxitrol + mitomycin</td>
<td>6/6</td>
<td>LE</td>
<td>Nil</td>
<td>No</td>
</tr>
<tr>
<td>15</td>
<td>38</td>
<td>M</td>
<td>LE</td>
<td>Primary</td>
<td>6/6</td>
<td>Excision + Maxitrol + mitomycin</td>
<td>6/6</td>
<td>LE</td>
<td>Nil</td>
<td>No</td>
</tr>
</tbody>
</table>
and postoperatively. Mitomycin C eye drops (0.4
mg/ml or 0.04%) were prepared in a cytotoxic
dispensing safety cabinet by dissolving the
mitomycin vial in sterile water for injection and
transferring it to a clear ophthalmic dropper.
The drops were kept in the refrigerator and used
within 2 weeks.

Results
In group I, 15 eyes of 15 patients were treated.
All were men. Their age ranged from 19 years to
50 years (mean age 34 years). All patients had
primary pterygia except one patient (case 4,
Table 1) who had recurrent pterygium. All
pterygia were located nasally. Out of 15 cases,
nine patients had recurrence, seen as early as 3
months to as late as 10 months (60%). One
patient (case 2, Table 1) failed to attend the clinic
for review but when seen 17 months after surgery
showed recurrence of pterygium. He stated that
recurrence occurred very soon after his surgery.
Six patients who did not show any recurrence
were followed up for a minimum of 21 months to
a maximum of 36 months.

In group II, 17 eyes of 15 patients were treated
(Table 2). Thirteen patients were men and two
women. Their ages ranged from 24 years to 53
years (mean age 38 years). All pterygia were
located nasally. Three pterygia were of recurrent
type, the remaining were of a primary nature. No
patient showed any recurrence. The follow up
period ranged from 13 months to 19 months. All
patients were strictly advised not to use more
than one drop of mitomycin C four times a day
and to discontinue it after 2 weeks of use.
Conjunctival infection was the most frequent
complication seen in all these patients with
delayed wound healing for 3–4 weeks. One of the
patients (case 7, Table 2) stopped the mitomycin
C drops after 1 week of use as the eye was
irritable. No patient revealed any corneal changes,
scleral changes, or anterior chamber reaction.
No late changes were seen in these patients.

Discussion
Pterygium excision with the bare sclera technique
was first described by Ombrain.11 It represents
the most convenient and commonly used
procedure all over the world. However it is
accompanied by recurrence rate of 30–50%.14 In
our group of 15 patients the recurrence rate was
much higher (60%). Because of the increased
recurrence rate, adjunctive treatment was
necessary to achieve good results. Mitomycin is
an antimetabolite with antiproliferative effect on
cells showing the highest rate of mitosis by
inhibiting DNA synthesis. It is produced by
Streptomyces caesopitus. The drug is also referred
to as mitomycin C to differentiate it from
mitomycin A and B which under certain
conditions are also produced by Streptomyces
caesopitus. Mitomycin C is present in a blue-
violet crystalline powder and is soluble in water.
Following reconstitution of the powder for
topical use, mitomycin 0.4 mg/ml has a pH of
6–8, and is stable for 2 weeks when refrigerated
at 2–8°C. When used in topical form, our series of
17 eyes of 15 patients showed no recurrence at
all – a 100% success rate. The minimum follow
up period for these patients was 13 months. This
is very significant as most of our recurrences in
the first group occurred during the first 6 months
(first case at 10 months). Our patients showed
only exaggerated conjunctival injection with
delayed wound healing for 3–4 weeks, but this
settled down with no significant consequences.

We think this form of adjunctive therapy is
superior in comparison with the other modes of
treatment such as topical thiopeta drops14,16
radiation,10 and laser treatment.12 Even
compared with conjunctival autografts, this
technique is simpler as it is performed only
under local anaesthesia thus avoiding the risk of
retrobulbar anaesthesia in young patients.

2 Sandhill-Smith J. Eye diseases in hot climates. Bristol: ELBS/
3 Pico G. Recurrent pterygium in corneal and external disease of
4 Van Den Breuk HAS. Results of prophylactic postoperative
irradiation in 1300 cases of pterygium. Am J Ophthalmol
1968; 103: 723–35.
5 Fine M. Recurrent pterygium, mucous membrane grafts.
In: Barrasso J, Binder PS, Buxton JN, et al. Controversies in
ophthalmology. Vol 1. Miami: American Academy of
6 Inster MS, Caldwell DR. Peripheral diseases (Terrien’s and
recurrent pterygium). In: Brightbill FS, ed. Corneal surgery
7 Alain-Camino F. The use of postoperative beta radiation in
8 De-Keizer RJW. Pterygium excision with or without post-
operative irradiation, a double blind study. Doc Ophthalmol
9 Cooper JS. Postoperative irradiation of pterygium. Ten
10 Bahrausa F, Datta R. Postoperative beta radiation of
11 Tarr KH, Constable IJ. Late complications of pterygium
12 Boyd BF. Highlights of ophthalmology. Atlas and textbook of
microsurgery and laser surgery. 30th Anniversary Japan,
Republic of Panama: Highlights of Ophthalmology, 1984;
354–45.
13 Joselton GA, Muller P. Incidence of pterygium recurrence.
14 Langham ME. The inhibition of corneal vascularisation by
triethylene thiophosphoramide. Am J Ophthalmol 1960; 49:
(May Pt II) 25.
15 Meacham CT, Triethylenethiophosphoramide in the
54: 751.
16 Rock RL. Inhibition of corneal vascularisation by triethylene
17 Kenyon KR, Wagner MD, Hettinger ME. Conjunctival
autograft transplantation for advanced and recurrent
18 Thoft RA. Conjunctival transplantation. Arch Ophthalmol
19 Hayasaka S, Noda S, Yamamoto Y, Setogawa T. Postoperative
irradiation of low-dose mitomycin-C in the treatment of
20 Singh G, Wilson MR, Foster S. Mitomycin eye drops as
A treatment of the pterygium by mitomycin-C instillation.
22 Ombrain A. The surgical treatment of pterygium. Br J
Role of mitomycin C in pterygium surgery.

P. S. Mahar and G. E. Nwokora

doi: 10.1136/bjo.77.7.433

Updated information and services can be found at:
http://bjo.bmj.com/content/77/7/433

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/