Smoking of beedies and cataract: cadmium and vitamin C in the lens and blood

S Ramakrishnan, K N Sulochana, T Selvaraj, A Abdul Rahim, M Lakshmi, K Arunagiri

Abstract
Estimation of cadmium and vitamin C was performed in the blood and lens of smokers in three age groups up to a maximum age of 58, habituated to smoking a minimum of 10 beedies a day for many years, as well as those of non-smokers in the same age groups. Only nuclear cataracts with or without posterior or anterior subcapsular cataract were chosen. It was found that there was a significant accumulation of cadmium in both the blood and the lens of the smokers. Such an accumulation of cadmium might have a role in cataractogenesis in chronic smokers. In a similar experiment, with smokers and non-smokers of two age groups up to a maximum age of 40, both without cataract, increased levels of cadmium were found in the blood of smokers only, though the extent of accumulation was not as high as in chronic smokers of higher age groups. Vitamin C content of lens was on the lower side of normal in both chronic smokers of beedies in the two age groups and non-smokers with nuclear cataract with or without posterior and anterior subcapsular cataract, and there was no significant change brought about by smoking. Vitamin C levels in blood were towards the lower side of the normal in smokers and non-smokers with and without cataract.

Smoking of cigarettes causes cataract at a young age as found by Clayton et al,1 Harding,2 Harding and Van Heyningen,3 and Flaye et al.4 West et al5 reported that out of 838 watermen in Maryland, USA free from other probable causes, 229 who smoked, developed nuclear cataract and this was dose dependent. When smoking was stopped for a reasonable length of time, the susceptibility to cataract formation was less. Smoking appears to induce oxidative stress, in that smokers have diminished levels of antioxidants, ascorbate, and carotenoids.5,7 The constituent aromatic compounds and trace metals in smoke condensates generate long lived reactive oxygen species. These might cause oxidative damage to the lens and produce cataract.8 It was assumed that changes in the cadmium and vitamin C levels in the blood might be responsible for cataractogenesis in the smokers for the following reasons.

It is reported that smokers have higher levels of cadmium in blood,9 milk,10 and tissues.11 When a person smokes, his body receives significant amounts of cadmium from the tobacco leaves. This is due to the capacity of the tobacco plants to absorb and concentrate cadmium salts from the earth.12 The cadmium so received binds to haemoglobin of blood,13 lungs,14 and low molecular weight proteins such as metallothioneins15 of liver and kidneys, and is retained in the body with some free cadmium.16 While Nath17 and Racz18 have reported a progressive accumulation of cadmium in senile cataract as brunesence advances, there are no reports on the cadmium content in the lens tissue of smokers. As smoking causes accumulation of cadmium in blood and tissues, it was thought that cadmium could also accumulate in the lens of smokers with cataract.

It is also reported that there is depletion of vitamin C in the blood and lens of smokers.6,7,19–22 Jain et al20 have found a depletion of vitamin C in the lens in cases of black cataract but have not given the age of their subjects. As aging is reported to decrease the levels of vitamin C in the lens,6,7 we fixed the age between 40 and 50. Being an antioxidant and an electron sink, vitamin C quenches the oxygen free radicals produced in the lens.21 In its deficiency, oxidant challenge may yet the upper hand and could cause oxidation of membrane proteins and lipids.

As West et al5 found less susceptibility to cataract among those who stopped smoking, we opined that only biochemical variations and no permanent histological changes in the lens were responsible for the incidence.

Table 1 Subject details

<table>
<thead>
<tr>
<th>Group</th>
<th>Number</th>
<th>Age range (years)</th>
<th>% Of total cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-smokers with clear lens</td>
<td>25</td>
<td>30–40</td>
<td>16</td>
</tr>
<tr>
<td>Smokers with clear lens</td>
<td>33</td>
<td>30–40</td>
<td>20</td>
</tr>
<tr>
<td>Group II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-smokers with cataract</td>
<td>58</td>
<td>40–58</td>
<td>37</td>
</tr>
<tr>
<td>Group III</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smokers with cataract</td>
<td>43</td>
<td>40–58</td>
<td>27</td>
</tr>
</tbody>
</table>

Department of Biochemistry, Medical and Vision Research Foundations, Madras 600 006, India
S Ramakrishnan
K N Sulochana
M Lakshmi
K Arunagiri

Stanley Medical College, Madras, India
T Selvaraj
A Abdul Rahim

Correspondence to: S Ramakrishnan
Accepted for publication 5 September 1994
Table 2 Cadmium levels in lens (smokers vs non-smokers both with cataract)

<table>
<thead>
<tr>
<th>Age</th>
<th>Category</th>
<th>Mean (SEM) µg/g lens tissue</th>
<th>Mean (SEM) µg/g lens proteins</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(years)</td>
<td></td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40–50</td>
<td>Non-smokers with cataract (group III)</td>
<td>5.0 0.2896 (0.072)</td>
<td>1.176 (0.178)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Smokers with cataract (group IV)</td>
<td>3.0 0.6100 (0.0812)</td>
<td>2.15 (0.398)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Difference</td>
<td>2.0 0.3114</td>
<td>0.974</td>
<td><0.05</td>
</tr>
<tr>
<td>51–55</td>
<td>Non-smokers with cataract (group III)</td>
<td>5.0 0.1350 (0.0223)</td>
<td>0.688 (0.086)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Smokers with cataract (group IV)</td>
<td>6.0 1.615 (0.509)</td>
<td>2.682 (0.508)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Difference</td>
<td>1.0 1.3625</td>
<td>5.759</td>
<td><0.05</td>
</tr>
<tr>
<td>56–58</td>
<td>Non-smokers with cataract (group III)</td>
<td>22.0 0.2274 (0.023)</td>
<td>0.9391 (0.077)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Smokers with cataract (group IV)</td>
<td>22.0 1.1134 (0.227)</td>
<td>5.0302 (1.202)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Difference</td>
<td>3.0 0.8060</td>
<td>4.3629</td>
<td><0.01</td>
</tr>
<tr>
<td></td>
<td>r Values</td>
<td>3.89</td>
<td>3.25</td>
<td></td>
</tr>
</tbody>
</table>

Materials and methods

A total of 159 cases divided into four groups were studied as given in Table 1. They all belonged to the lower middle class and were treated in Stanley Medical College Hospital, Madras.

Owing to difficulty in getting specific cases of nuclear cataract alone and in those under the age of 50 as initially stipulated, two modifications had to be made in the original criteria. The maximum age was raised to 58 and patients with nuclear cataract with and without posterior or anterior subcapsular cataract were included. Likewise, it was difficult to get controls and smokers with clear lens over the age of 40. Hence the lower age limit was reduced to 30 for normals and smokers without cataract. Groups I and II were divided into two age groups each, 30–35 and 36–40, while groups III and IV were divided into three age groups each, 40–50, 51–55, and 56–58 for cadmium and two each, 40–54 and 55–60 for vitamin C studies.

Beedies contain only powdered tobacco leaves wrapped up in a dry leaf while cigarettes contain the same wrapped up in paper. The quality of tobacco used in cigarettes is different. The weight of a whole beedi (random sample) was found to be 0.3509 g while that of a cigarette 0.8924 g. The tobacco contents weighed 0.223 g in the beedi and 0.782 g in the cigarette. Tobacco used in the beedies contains 6–5 to 8–2% alkaloid nicotine, while that used in cigarettes has 2.7 to 3.7%. The other constituents are nicotinamide, nicotine, nicotinolines, nicotianine, resins, fats and sulphates, nitrates, chlorides, phosphates, malates and citrates of potassium, ammonium, calcium, etc, and oxalic acid. Beedies are commonly smoked by lower middle class people in India.

A double blind method was followed and the authors did not know of the affiliation of any subject to any of the prescribed groups beforehand.

The inclusion and exclusion criteria adopted were as follows:

(A) Inclusion criteria: studies were confined to

(i) only males. This is because it is reported that females are less susceptible to cadmium accumulation than males who smoke a larger number of cigarettes and hold more smoke in their lungs for a longer time

(ii) those treated in Stanley Medical Hospital, Madras, India

(iii) those up to a maximum age of 58 years; higher age was avoided as aging itself could decrease vitamin C in lens and cause accumulation of cadmium

(iv) those habituded to smoking a minimum of 10 beedies a day

(v) those who had no break in smoking for more than 1 month during the past year, and

(vi) those who had only nuclear cataract with or without anterior or posterior subcapsular cataract.

(B) Exclusion criteria. The following were excluded:

(i) those who had cortical cataract

(ii) those who had diabetes mellitus

(iii) hypertension

(iv) glaucoma

(v) alcoholics, and

(vi) those on steroid treatment.

The exclusion criteria were assessed by studying the case history of the patients, blood sugar investigation for diabetes mellitus, and examination by a physician and an ophthalmologist.

Blood taken by venepuncture and the intact cataractous lenses operated out were used immediately. All the patients were examined by slit-lamp and then categorised into groups.

A volume of 2 ml of whole blood was digested with 3 ml of concentrated nitric acid/perchloric acid (5:1) by heating to a paste. The residue was made up to 2 ml with five times glass distilled water and a drop of concentrated nitric acid was added to prevent adsorption of cadmium on the wall of the container. Half the lens material was dried between the folds of filter paper, weighed accurately, digested, and made up as in the case of blood. The cadmium nitrate extract was analysed in an atomic absorption spectrophotometer using cadmium standards received from Sigma Chemical Company, St Louis, USA. A volume of 3 ml of nitric acid/perchloric acid mixture was also digested and treated similarly for blank values. Results were expressed as µg/dl of blood, µg/g of wet lens, and µg/g of lens proteins. Cadmium levels in beedies and cigarettes were also estimated in the same way.

After using 2 ml of whole blood for cadmium, the remaining blood was centrifuged and plasma separated. A volume of 1 ml of plasma was mixed with equal volume of 10% trichloroacetic acid. This mixture was titrated against 0.2 ml of 2,6-dichlorophenol indophenol solution. After using half the lens for cadmium estimation, the remaining half was dried between the folds of filter paper, weighed and treated with 2 ml of 10% trichloroacetic acid. The precipitated lens proteins were centrifuged, removed, dissolved in 0.25 N sodium hydroxide and estimated by the method of Lowry et al using bovine serum albumin from Sigma as standard. The trichloroacetic acid extract was titrated against 0.2 ml of 2,6-dichlorophenol indophenol and vitamin C was calculated per gram of lens tissue and of
Table 3 Cadmium levels in blood (smokers v non-smokers both with cataract)

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Category</th>
<th>N</th>
<th>Mean (µg/dl)</th>
<th>SD</th>
<th>SEM</th>
<th>t test</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>40–50</td>
<td>Non-smokers with cataract (group III)</td>
<td>5</td>
<td>0·362</td>
<td>0·220</td>
<td>0·098</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Smokers with cataract (group IV)</td>
<td>3</td>
<td>0·3067</td>
<td>0·219</td>
<td>0·127</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Difference</td>
<td></td>
<td>0·0553</td>
<td></td>
<td></td>
<td>0·35 NS</td>
<td></td>
</tr>
<tr>
<td>51–55</td>
<td>Non-smokers with cataract (group III)</td>
<td>6</td>
<td>0·2750</td>
<td>0·132</td>
<td>0·054</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Smokers with cataract (group IV)</td>
<td>6</td>
<td>1·5753</td>
<td>1·191</td>
<td>0·486</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Difference</td>
<td></td>
<td>1·2983</td>
<td></td>
<td></td>
<td>2·65 <0·05</td>
<td></td>
</tr>
<tr>
<td>56–58</td>
<td>Non-smokers with cataract (group III)</td>
<td>26</td>
<td>0·2637</td>
<td>0·192</td>
<td>0·038</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Smokers with cataract (group IV)</td>
<td>23</td>
<td>1·4452</td>
<td>1·166</td>
<td>0·243</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Difference</td>
<td></td>
<td>1·1815</td>
<td></td>
<td></td>
<td>5·10 <0·01</td>
<td></td>
</tr>
</tbody>
</table>

lens proteins. All the values were subjected to statistical analysis by Student’s t test.

Results and discussion

It was found that there was significantly high accumulation of cadmium in the lenses of smokers with cataract in all three age groups, 40–50, 51–55, and 56–58 (Table 2) compared with that of non-smokers in the same age groups with cataract. There was a twofold increase in lens cadmium in the 40–50 year age group while the increase was five to 10 times in the higher age groups, perhaps, because of chronic smoking.

With cadmium in the lens, the results are better expressed in terms of proteins to avoid any complications due to hormonal disturbances, fatty infiltration, or hydration which could alter the tissue weight. There was a sixfold increase in blood cadmium in smokers with cataract belonging to the two age groups, 51 to 55 and 56–58, compared with that of non-smokers with cataract (Table 3). The results for blood cadmium and lens cadmium are statistically significant in respect of differences between non-smokers and smokers. The absence of any significant increase of cadmium in the blood of smokers in the 40–50 year age groups in group IV (Table 3) might be due to their lower age, and fewer years of smoking. The number of subjects in the group was also comparatively less than the other age groups in groups III and IV owing to difficulty in getting patients between 40 and 50 with nuclear cataract. The maximum age of the subjects in groups III and IV was 58 and these subjects had been smoking beedies for many years at the rate of more than 10 beedies a day without a break even for a month. The studies clearly show that there is accumulation of the heavy metal ion of cadmium in the lens of chronic smokers which might have a role in cataractogenesis. The accumulation of cadmium in group IV is not due to age as, in the non-smokers of the same age group with cataract, there was much less cadmium in their lens and blood (Tables 2 and 3). No doubt cadmium has been reported to be present in the lens in senile cataract28 and its concentration is directly proportional to the development of brunescence, but this is due to old age. The levels reported are 0·209 µg/g for immature, 0·317 for mature, and 0·505 for hypermature cataractous lenses28 but much less than the values of 1·11 to 1·46 found by us (Table 2). Normal lens has no cadmium.17

It is reported that there is an eightfold increase of cadmium in the lungs of rats exposed to cigarette smoke.29

In groups I and II also – that is, subjects without cataract in age groups 30–35 and 36–40, there is accumulation of cadmium in the blood of smokers (Table 4) confirming the finding of previous workers in the field. The difference in our values is statistically significant. The values reported in the literature are different – for instance, 0·5 µg/dl,14,30 0·3 to 1·2 µg/l,13 0·3–7 µg/l13 for non-smokers, and 0·6–9 µg/l9 in smokers.13 In view of ecological and environmental conditions, differences in the cadmium content of cigarettes and beedies, number smoked and, above all, absence of a homeostatic mechanism for cadmium in the living system, such variations are bound to occur and comparison of results has to be made in the studies in the particular centre.

We could not find anyone over 40 with a clear lens. As smoking was relatively for a much shorter duration, though there was accumulation of cadmium in group II, it was not as high as in group IV. The relatively higher levels of cadmium in different age groups in group IV might be due to chronic smoking – that is, these subjects of maximum age 58 years were smoking for more than 20 years compared with smokers aged 30–40 in group II. In respect of non-smokers in group III, the high value in age groups 40–50, 51–55, and 56–58 compared with group I (30–40 years) could be due to exposure to cadmium in the environment31 and possibly other factors.

Cadmium may hasten cataractogenesis by various mechanisms. Normally it is bound to lungs and low molecular weight proteins, the metallothioneins in the kidneys, liver, and eye lens and also haemoglobin in blood. There is also free cadmium.16 It is likely that as the concentration of cadmium increases in blood and tissues, the haemoglobin, as result of bound cadmium, might lose its full power of delivery of oxygen to tissues including ocular structures. This would mean decreased ATP production and availability of energy. Cadmium could also bind and intercalate with lens proteins and denature them. It is known that heavy metal ions of mercury, lead, etc, can precipitate blood and body proteins. Again, cadmium is known to compete with copper32 and zinc33 in the body and could affect the copper and zinc homeostasis of blood and copper containing protein such as ceruloplasmin and enzymes such as superoxide dismutase and cytochrome a3, the respiratory enzyme. Superoxide dismutase activity can be

Table 4 Cadmium levels in blood (smokers v non-smokers both without cataract)

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Category</th>
<th>N</th>
<th>Mean (µg/dl)</th>
<th>SD</th>
<th>SEM</th>
<th>t test</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>30–35</td>
<td>Non-smokers without cataract (group I)</td>
<td>14</td>
<td>0·069</td>
<td>0·008</td>
<td>0·002</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Smokers without cataract (group II)</td>
<td>11</td>
<td>0·0815</td>
<td>0·021</td>
<td>0·006</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Difference</td>
<td></td>
<td>0·0125</td>
<td></td>
<td></td>
<td>1·98 <0·05</td>
<td></td>
</tr>
<tr>
<td>36–40</td>
<td>Non-smokers without cataract (group I)</td>
<td>7</td>
<td>0·0654</td>
<td>0·006</td>
<td>0·002</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Smokers without cataract (group II)</td>
<td>8</td>
<td>0·1121</td>
<td>0·024</td>
<td>0·006</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Difference</td>
<td></td>
<td>0·0467</td>
<td></td>
<td></td>
<td>1·80 <0·05</td>
<td></td>
</tr>
</tbody>
</table>

Downloaded from http://bjo.bmj.com/ on August 27, 2017 - Published by group.bmj.com
affected through competition with zinc also. Cadmium decreases the bioavailability of selenium and this may affect the biosynthesis of glutathione peroxidase. Deficiency of vitamin E is also reported. By a decrease in antioxidants such as ceruloplasmin, superoxide dismutase, and glutathione peroxidase, the defence against oxidative damage could be weakened by the accumulation of cadmium.

Vitamin C

Tables 5 and 6 show levels of vitamin C in the blood of smokers and non-smokers. There is no significant difference between the four groups though the average value of vitamin C was not at the peak of normal — that is, 20 mg/l reported in the literature.34

Vitamin C levels in lens tissue and lens proteins are given in Table 7. In this case also there is no variation between groups III and IV though the values are on the lower side of normal — that is, 0-14 mg/g lens tissue as against an upper normal of 0-35 mg/g lens tissue. Similar results, however, are obtained in the lens of non-smokers with cataract. Smoking beedies did not cause any significant decrease of vitamin C either in the blood or lens in our studies. Perhaps smoking a good number of beedies for a prolonged time might have brought about a significant decrease in vitamin C as reported for cigarettes by earlier workers. Also, what is applicable to cigarette smoking need not be applicable to beedie smoking, for instance, cadmium is present to only one third of the level in beedies compared with cigarettes of 0-1 μg/100 mg in cigarettes and 0-03 μg/100 mg in beedies). There are different theories to explain cataract formation in cigarette smokers. It could be caused by the reactive oxygen species (ROS) and oxidant effect, thiocyanate, or naphthalene.

We conclude that one of the major causes of nuclear cataract, as reported by West et al., could be biochemical as a result of accumulation of cadmium from smoking in the lens. Cadmium may hasten cataractogenesis directly by interaction with lens proteins and indirectly by its competition with copper, zinc, and selenium and causing a decrease of antioxidants. On cessation of smoking, cadmium accumulation may stop and the individuals become less susceptible to cataractogenesis.

17 Nath R. Studies on the intraintralicular distribution of Cu, Zn, Cd, and Se, in normal human senile cataractous lenses and experimental rabbit model and role in cataractogenesis. Annual report on the ICMR project.
22 Pelletier O. Smokers have decreased vitamin C. Am J Clin Nutr 1984; 32: 1255-61.
23 Ramakrishnan S. Essentials of biochemistry and ocular biochemistry, Annamalaiagaram, Chidambaram, India: Annamalai University publication, 1993: 53.
26 Harris LJ, Ray SN. Determination of ascorbic acid by the method using titration with 2,6-dichlorophenol indophenol. Lancet 1955; i: 462.

Smoking of beedies and cataract: cadmium and vitamin C in the lens and blood.

S Ramakrishnan, K N Sulochana, T Selvaraj, A Abdul Rahim, M Lakshmi and K Arunagiri

doi: 10.1136/bjo.79.3.202