Effects of interferon alfa and gamma on human uveal melanoma cells in vitro

I de Waard-Siebinga, W M Creyghton, J Kool, M J Jager

Abstract

Background—Uveal melanoma is a tumour with a high incidence of metastasis and a high mortality rate. Additional therapies to obtain a better local control or an effective treatment of metastases are necessary. Interferons may be applied.

Methods—The effects of human interferon alfa and gamma on proliferation and expression of immunologically important molecules of human uveal melanoma cells in vitro were studied. A propidium iodide assay was used to determine proliferation and immunostaining with monoclonal antibodies was applied to detect changes in antigen expression on two primary uveal melanoma cell lines, Mel 202 and 92-1.

Results—Interferon alfa inhibited proliferation of cell line 92-1 at a concentration of 50 IU/mL, but had no effect on cell line Mel 202, while interferon gamma inhibited growth of both cell lines. Only interferon gamma had a visible effect on cell morphology. With respect to the immunomodulatory effects, interferon alfa increased monomorphic HLA class I expression, but did not affect HLA class II expression. Interferon gamma induced not only HLA class I but also class II expression. The effects on HLA expression were locus-specific with the strongest effects observed for HLA-B and DR products. Small differences were observed with respect to the susceptibility of two different melanoma cell lines to antiproliferative effects and to modulation of antigen expression.

Conclusion—The effects of interferon alfa and gamma on human uveal melanoma cells in vitro suggest a potential role of these cytokines in the treatment of patients with uveal melanoma. In particular, the immunomodulatory effects of these cytokines in vitro imply that treatment of patients with these cytokines might stimulate a beneficial anti-melanoma immune response in vivo.

In recent years the anti-tumour activities of interferons (IFNs) have been studied extensively. Promising therapeutic results have been reported, especially in the treatment of haematological malignancies.1–3 IFNs may also be of importance in the therapy of high risk cutaneous melanoma4–5 although the results are variable. However, the exact mechanisms of the anti-tumour activities of IFNs (immunomodulatory or antiproliferative) are still unknown and it is impossible to predict which patients may benefit most from IFN treatment. With regard to the potential immunomodulatory effect, IFNs are able to modulate the expression of cell surface molecules such as HLA class I and class II antigens.6 These molecules are essential in the generation and regulation of an effective anti-tumour immune response by T cells, since tumour specific antigens can only be recognised by T lymphocytes when the antigens are presented in the groove of HLA molecules. Since allele specific binding of tumour specific antigens has been reported – for example, for human cutaneous melanoma,7–9 differences in the level of different HLA molecules might be important in the development of effective anti-tumour immune responses.

In a previous study, we determined the expression of HLA class I and II antigens on frozen tissue sections of uveal melanoma. Differences in the level of expression of different HLA molecules were observed: HLA-B antigens showed a lower level of expression than HLA-A.10 This low level of allele specific HLA class I expression might affect a putative anti-tumour immune response in vivo. Based on these results we hypothesised that HLA molecules on uveal melanoma cells in vitro might be sensitive to IFN mediated upregulation of expression.

More is known about the effects of IFNs on other types of cultured human malignant cells.11–14 For human cutaneous melanoma cells, for instance, the effects of IFNs on cell proliferation, cell differentiation, and antigenic phenotype have been studied.15–18 In summary, these studies revealed the following: (1) inhibition of cell proliferation by both type I IFN (IFN-α and IFN-β) and type II IFN (IFN-γ); (2) cellular dedifferentiation by type II IFN; and (3) enhancement of HLA class I expression by types I and II IFNs and enhancement of HLA class II expression by type II IFN. Information on human uveal melanoma cells is still lacking, and it may be helpful to predict the potential effect of the clinical application of different interferons.

In the present study, therefore, we investigated the in vitro effects of type I IFN (recombinant IFN-α) and type II IFN (recombinant IFN-γ) on cell proliferation, HLA antigen expression, and cell morphology of human uveal melanoma cells.

Materials and methods

CELL LINES

Two human uveal melanoma cell lines, Mel
202 and 92-1, were used. The cell line Mel 202 was kindly provided by Dr B Ksander (Schepens Eye Research Institute, Boston, USA). The cell line 92-1 was established from a uveal melanoma in our own laboratory. Tumour material was obtained from a 76-year-old patient with an ocular melanoma with extensive infiltration in the orbit. Tumour tissue was made into a cell suspension and grown on 3T3 mouse fibroblast cells as a feeder layer. The resulting tumour cells have been passaged approximately 45 times during more than 2 years. The in vitro doubling time is 58 hours. The cells were maintained as monolayers in petri dishes in RPMI 1640 medium (Gibco, Paisley, UK) supplemented with penicillin and streptomycin (100 IU/ml and 100 μg/ml, Gibco), L-glutamine (3 mM, Gibco) and fetal bovine serum (10%, Hyclone, USA). Cell cultures were incubated at 37°C in a humidified atmosphere of 5% carbon dioxide in air.

All cells of both cell lines showed expression of the melanocYTE associated antigens as determined in immunohistology with monoclonal antibodies HMB-45 and NKI-beteb.

CYTOKINES

Recombinant human interferon gamma, rIFN-γ (specific activity 2×10^5 IU/mg protein) was kindly provided by Dr S Osanto (Leiden University Hospital, the Netherlands). Recombinant human interferon alfa-2b, rIFN-α (specific activity 1.66×10^8 IU/mg protein) was kindly supplied by Essex BV, Schering Plough, the Netherlands.

CELL PROLIFERATION

For the proliferation experiments, 1×10^5 cells and 10^5 cells of the cell lines 92-1 and Mel 202, respectively, were seeded in 6 cm petri dishes and allowed to attach over a 24 hour period. The cultures were then incubated with 50 or 500 IU/ml of rIFN-α or rIFN-γ. The control cultures consisted of cells incubated with standard medium without rIFN-α or rIFN-γ. Between day 1 and day 7 after administration of the cytokines, detached cells were collected from the supernatants, and attached cells were harvested with a 0.01% trypsin solution (trypsin 1:250, Na/EDTA 0.2 mg/ml, and dextrose 1 mg/ml; Difco, USA).

Both cell samples from each petri dish were stored together at 4°C until use in the proliferation assay at day 9. The experiments were performed in triplicate dishes. Cell proliferation was determined in a non-radioactive propidium iodide assay (PI assay) as described by Bruning and Kardol, and Schanz et al based upon the measurement of total nuclear DNA. Briefly, 100 μl of each sample was pipetted in a 96 well U bottom tray and 50 μl of a lysing staining quenching mixture (LSQM) containing 14-9% Triton-X-100 (8% Fluka, Switzerland), 14-9% propidium iodide (1 mg/ml; Sigma, USA), 0-9% Leitz-Quencher (diluted 1/4; Leitz, German), 69-3% EDTA buffer (4-9% sodium EDTA in distilled water, pH 7-0) was added. After 4 hours of incubation the trays were read by an automated fluorescence microscope (Leica-Patimed, Germany) which measures photometer values (mV) to determine the number of PI stained nucleated cells. The last wells of each tray contained LSQM medium only and served as background control.

CELL MORPHOLOGY

In order to evaluate the effects of interferons on cell morphology, photographs of the cultures were taken with an inverted microscope (Axiovert 10, Zeiss, Jena, Germany) equipped with phase contrast lenses, after 2 days of incubation.

IMMUNOCYTOCHEMISTRY

For immunocytochemistry uveal melanoma cells were seeded in six well plates in numbers of 1-3×10^5 per well in a total volume of 1.5 ml of standard medium. Twenty four hours after seeding, cells were incubated with rIFN-α or rIFN-γ at concentrations of 50, 200, and 500 IU/ml. Control cultures consisted of cells incubated without the administration of cytokines. After 2 days of incubation the cells were harvested by trypsinisation (0-01% trypsin). Immediately after harvesting, the cells were attached to glass slides using a Shandon cytocentrifuge. These cytospin preparations (cytospots) were then air dried and fixed for 30 minutes in acetone at room temperature and stored at -70°C until required for immunocytochemistry. The cytospots were stained with monoclonal antibodies using a three step indirect immunoperoxidase technique.

Briefly, the cytospots were incubated with the specific antibody in the appropriate dilution for 1 hour, followed by incubation for 30 minutes with peroxidase conjugated rabbit anti-mouse antiserum and 30 minutes with peroxidase conjugated swine anti-rabbit immunoglobulin (Dakopatts, Glostrup, Denmark). Between each incubation, the cytospots were washed in phosphate buffered saline (PBS) for 5 minutes. For visualisation of the immunoreactivity, the slides were incubated for 7 minutes with 3-amino-9-ethyl-carbazole at 0.2 mg/ml (Sigma, St Louis, MO, USA) in 0.1 M sodium acetate buffer (pH 5), containing 0.05% hydrogen peroxide. Finally, the preparations were

Table 1 Monoclonal antibodies

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Specificity</th>
<th>Dilutions*</th>
<th>Cytochemistry</th>
<th>FACS analysis</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>W6/32</td>
<td>HLA, A, B, C</td>
<td>1:20</td>
<td>1:40</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>BUM4</td>
<td>B2-microgl</td>
<td>1:2</td>
<td>1:4</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>HCA2</td>
<td>HLA-A</td>
<td>1:600</td>
<td>1:600</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>HC10</td>
<td>HLA-B</td>
<td>1:600</td>
<td>1:600</td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>BB7.2</td>
<td>HLA-A2, Aw69</td>
<td>1:20</td>
<td>1:40</td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>GAP-A3</td>
<td>HLA-A3</td>
<td>asc</td>
<td>1:1</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>116/528</td>
<td>HLA-Bw4</td>
<td>1:80</td>
<td></td>
<td>1:160</td>
<td>δ</td>
</tr>
<tr>
<td>SFR-4-B6</td>
<td>HLA-Bw6</td>
<td>asc</td>
<td></td>
<td>1:30</td>
<td>29</td>
</tr>
<tr>
<td>B8.11.2</td>
<td>HLA-DR</td>
<td>1:20</td>
<td>1:40</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>SPV-L3</td>
<td>HLA-DQ</td>
<td>1:2500</td>
<td>1:500</td>
<td></td>
<td>31</td>
</tr>
<tr>
<td>B7/21.2</td>
<td>HLA-DF</td>
<td>1:200</td>
<td>1:400</td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>Leu4</td>
<td>CD3</td>
<td>1:100</td>
<td></td>
<td></td>
<td>33</td>
</tr>
</tbody>
</table>

* Dilutions of the monoclonal antibodies as used for cytochemistry and FACS analysis respectively (asc=ascites, †=not used, source: Dr K Gelisethore, NTBS, Sheffield).
Effects of interferon alpha and gamma on human uveal melanoma cells in vitro

counterstained with Mayer’s haematoxylin, dehydrated, and coverslipped with Kaiser’s glycerol gelatin. Negative controls consisted of incubations replacing the primary antibodies by PBS/bovine serum albumin (BSA) 1%. The monoclonal antibodies used in this study are listed in Table 1. All slides were examined by light microscopy, magnification ×400. Immunoreactivity was scored by counting the number of positive cells of a total of 500 cells in each cytospot. Intensity of the staining was coded as follows: − no positive cells, + majority of positive cells staining weakly, ++ majority of positive cells staining intermediate, +++ majority of positive cells staining strongly.

FLUORESCENCE ACTIVATED CELL SORTER
ANALYSIS
For fluorescence activated cell sorter (FACS) analysis uveal melanoma cells were seeded in either 6 cm or 9 cm dishes. On day 1 after seeding, the cells were incubated with 200 IU/ml rIFN-α or rIFN-γ, either alone or in combination. All experiments were performed in duplicate dishes and control cultures consisted of untreated cells. After 2 days of incubation, the cells were harvested by trypsinisation to make single cell suspensions (0.01% trypsin). After washing in PBS, 0.5–1 × 10⁶ cells were incubated with 100 µl dilutions on the primary monoclonal antibodies in PBS/BSA 1% for 1 hour (the monoclonal antibodies are listed in Table 1). After incubation with the primary antibody, the cells were washed in PBS/BSA 1% followed by incubation with a 1:50 dilution of fluorescein isothiocyanate conjugated rabbit anti-mouse immunoglobulin (RAM/FITC; Dakopatts, Denmark) for 30 minutes. Both incubations were performed at 4°C. The fluorescence measurements were performed with a FACScan II (Becton Dickinson, San Jose, CA, USA). Background fluorescence was determined by incubating the cells with a non-reactive primary antibody (anti-CD3) and RAM/FITC.

STATISTICS
For statistical analysis of the proliferation data the Mann-Whitney test was used. Statistical analysis of the FACS data was performed using the LYSIS II software (Becton Dickinson).

Results
EFFECT OF IFN-α AND IFN-γ ON CELL PROLIFERATION
The effects of IFN-α and IFN-γ on cell proliferation of two uveal melanoma cell lines (92-1 and Mel 202) were determined in a propidium iodide assay (Fig 1), and for each day the photometer values of the IFN treated cells were
In contrast with the 92-1 cells, proliferation of the Mel 202 cells was not affected by treatment with rIFN-α (Figs 1E and 1F). On the other hand, rIFN-γ totally inhibited proliferation of the Mel 202 cells in a similar fashion as it inhibited growth of 92-1 cells (Figs 1G and 1H).

EFFECT OF rIFN-α AND rIFN-γ ON CELL MORPHOLOGY

IFN-α did not significantly change cell morphology, while application of IFN-γ induced visible changes in the uveal melanoma cells: with IFN-γ the relative number of bipolar cells increased in comparison with the number of multipolar cells (Fig 2).

EFFECT OF IFN ON HISTOCOMPATIBILITY ANTIGENS

The effect of rIFN-α and rIFN-γ on expression of HLA class I and II molecules was studied with two techniques. At first, locus and allele specific monoclonal antibodies were applied to cytopsins of two uveal melanoma cell lines (92-1 and Mel 202) to determine the percentage of staining cells with and without the presence of interferon. Since our experiments showed very high staining levels (even at low concentrations of both types of interferon), we subsequently applied another technique— that is, FACS analysis, to study the effect of the combination of the two interferons used.

EFFECT OF rIFN-α AND rIFN-γ ON ANTIGENIC PROFILE AS DETERMINED BY IMMUNOCYTOCHEMISTRY

HLA class I expression

Strong expression of the non-polymorphic determinants of the HLA class I antigens (MoAb W6/32) and of β2 microglobulin (MoAb BBM1) was observed on 100% of the cells of both cell lines (data not shown). The immunocytochemical study on the effects of interferons was extended to locus and allele specific HLA class I expression, as determined by monoclonal antibodies directed against HLA-A, A2, A3, B, Bw4, and Bw6, respectively (Table 1). These polymorphic antigens were selected because of their high frequency in the population. We were able to determine the HLA class I type of the donor of cell line 92-1 retrospectively, and this was A2, A3, B51

Table 2 HLA class I expression and modulation by interferons after 2 days of incubation as determined by immunocytochemistry

<table>
<thead>
<tr>
<th>Cell line 92-1</th>
<th>Control</th>
<th>rIFN-α 50</th>
<th>rIFN-α 200</th>
<th>rIFN-α 500</th>
<th>rIFN-γ 50</th>
<th>rIFN-γ 200</th>
<th>rIFN-γ 500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment (IU/ml)</td>
<td>HLA-A int%*</td>
<td>HLA-A2 int%</td>
<td>HLA-A3 int%</td>
<td>HLA-B int%</td>
<td>HLA-Bw4 int%</td>
<td>HLA-A int%</td>
<td>HLA-A3 int%</td>
</tr>
<tr>
<td>Control</td>
<td>++/100</td>
<td>+/98</td>
<td>+/99</td>
<td>+/93</td>
<td>++/100</td>
<td>+/94</td>
<td>-/0</td>
</tr>
<tr>
<td>rIFN-α 50</td>
<td>++/100</td>
<td>+/100</td>
<td>++/100</td>
<td>++/100</td>
<td>++/100</td>
<td>++/100</td>
<td>++/100</td>
</tr>
<tr>
<td>rIFN-α 200</td>
<td>++/100</td>
<td>++/100</td>
<td>++/100</td>
<td>++/100</td>
<td>++/100</td>
<td>++/100</td>
<td>++/100</td>
</tr>
<tr>
<td>rIFN-α 500</td>
<td>++/100</td>
<td>++/100</td>
<td>++/100</td>
<td>++/100</td>
<td>++/100</td>
<td>++/100</td>
<td>++/100</td>
</tr>
<tr>
<td>rIFN-γ 50</td>
<td>+/100</td>
<td>+/100</td>
<td>+/100</td>
<td>+/100</td>
<td>+/100</td>
<td>+/100</td>
<td>+/100</td>
</tr>
<tr>
<td>rIFN-γ 200</td>
<td>++/100</td>
<td>++/99</td>
<td>++/100</td>
<td>++/100</td>
<td>++/100</td>
<td>++/100</td>
<td>++/100</td>
</tr>
<tr>
<td>rIFN-γ 500</td>
<td>++/100</td>
<td>++/100</td>
<td>++/100</td>
<td>++/100</td>
<td>++/100</td>
<td>++/100</td>
<td>++/100</td>
</tr>
</tbody>
</table>

*int=Intensity of staining; -, no positive cells; +, majority of positive cells staining weakly; +, +, +, or strongly. %= Percentage of positive cells of a total of 500 cells.
(Bw4), and B44 (Bw4). On both cell lines expression of HLA-Bw6 antigens was not observed, neither on untreated nor on IFN-α or IFN-γ treated cells, and Mel 202 did not express HLA-A2 antigens (data not shown).

The effects of IFN-α and IFN-γ on expression of locus and allele specific HLA antigens after 2 days of incubation are shown in Table 2. Without addition of IFNs, the 92-1 cells showed expression of HLA-A, A3, and HLA-B in high percentages, but incubation with IFN-α as well as with IFN-γ led to an increase to 100% of positive cells or to a higher staining intensity in cases where 100% of cells were positive already. The untreated 92-1 cells showed only weak staining of HLA-A2 on 69% of the cells and did not express HLA-Bw4. At their lowest dose, IFN-α and IFN-γ increased HLA-A2 expression and induced HLA-Bw4 expression. As shown in Table 2, HLA-B expression on Mel 202 control cells was clearly lower than on 92-1 cells, but expression was also increased by incubation with IFN-α and IFN-γ. The effects of interferons on HLA-Bw4 expression on the Mel 202 cells were much less pronounced than on 92-1.

HLA class II expression

The untreated cells of both cell lines did not express HLA class II antigens. Incubation with IFN-α at various concentrations did not change this. On the other hand, IFN-γ induced HLA class II expression on both cell lines already at the lowest concentration (Table 3). However, HLA-DR expression was induced only on a limited number of Mel 202 cells (max 7% of cells). The increase in HLA class II expression on the 92-1 melanoma cells was more pronounced and was dose dependent (Table 3). Besides HLA-DR expression, HLA-DP and HLA-DQ expression was also determined on the 92-1 cells, and revealed that HLA-DR reached a higher level of expression than HLA-DP and DQ. The effects of IFN-α and IFN-γ on HLA-DR expression on the 92-1 cells are shown in Figure 3.

EFFECT OF IFN-α AND IFN-γ ON ANTIGENETIC PROFILE AS DETERMINED BY FACS ANALYSIS

Immunohistology on cytospin preparations revealed strong expression of the monomorphic determinants of the HLA class I antigens and of β2 microglobulin on 100% of the cells of both cell lines. However, the already high level of expression of these antigens made it impossible to study the effects of IFN-α or IFN-γ on these molecules. In order to determine the effects of interferons in a more quantitative manner than is possible with cytochemistry, we therefore performed FACS analysis additionally. This technique might also make it possible to determine synergetic or antagonistic effects of interferons on expression of cell surface antigens.

HLA class I expression

The untreated cells of the two different cell lines showed differences in the level of expression of the monomorphic HLA class I determinants, with the highest levels of expression observed for the 92-1 cell line (Table 4). Two days of treatment with IFN-α and IFN-γ at a concentration of 200 IU/ml significantly enhanced the expression of the

Table 3 HLA class II expression and modulation by interferons after 2 days of incubation as determined by immunocytochemistry

<table>
<thead>
<tr>
<th>Treatment (IU/ml)</th>
<th>Cell line 92-1</th>
<th>Cell line Mel 202</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HLA-DR int/%*</td>
<td>HLA-DQ int/%</td>
</tr>
<tr>
<td>Control</td>
<td>-/0</td>
<td>-/0</td>
</tr>
<tr>
<td>rIFN-α 50</td>
<td>+/-1</td>
<td>+/-1</td>
</tr>
<tr>
<td>rIFN-α 200</td>
<td>+/-1</td>
<td>+/-1</td>
</tr>
<tr>
<td>rIFN-α 500</td>
<td>+/-1</td>
<td>+/-1</td>
</tr>
<tr>
<td>rIFN-γ 50</td>
<td>+/-1/64</td>
<td>+/-1/64</td>
</tr>
<tr>
<td>rIFN-γ 200</td>
<td>+/-1/64</td>
<td>+/-1/64</td>
</tr>
<tr>
<td>rIFN-γ 500</td>
<td>+/-1/64</td>
<td>+/-1/64</td>
</tr>
</tbody>
</table>

int= intensity of staining: -, no positive cells; +, majority of positive cells staining weakly; +++, strongly; ++/%=Percentage of positive cells of a total of 500 cells. NT=not tested.

Figure 3 Induction of HLA-DR expression by IFN-γ and not by IFN-α (cell line 92-1; immunocytochemistry). (A) The IFN-α treated cells (200 IU/ml for 2 days) are HLA-DR negative. (B) After 2 days of treatment with IFN-γ 86% of the cells become HLA-DR positive. (Cytospin preparations; original magnification ×200.)
monomorphic determinants of the HLA class I molecules on both cell lines (Table 4; Fig 4A–D). Treatment with a combination of both interferons revealed small synergistic effects (Table 4).

The untreated cells of both cell lines showed only little fluorescence with the monoclonal antibodies directed against the HLA-A and B locus (HCA2 and HC10, respectively), when compared with the control antibody (Table 4; Fig 4E–H). These findings correspond with the results obtained with anti-HLA-B with regard to Mel 202, but are in contrast with the outcome of the HLA-A staining on both cell lines and with the HLA-B staining on 92-1 cells with the immunoperoxidase technique. The latter technique had revealed an intermediate staining of 99–100% of the 92-1 cells with both monoclonal antibodies (Table 2). In agreement with the immunocytochemical study, both IFN-α and IFN-γ increased the level of expression of HLA-A and HLA-B on both cell lines. No synergistic effects were observed when both interferons were used in combination.

In a similar way as with immunocytochemistry, we observed that (1) both IFN-α and IFN-γ increased the level of expression of HLA-A2 on the 92-1 cells and that the other cell line did not carry HLA-A2, (2) HLA-A3 was expressed on both cell lines and could be enhanced by treatment with any type of IFN, (3) HLA-Bw4 was hardly expressed on untreated 92-1 cells and could be induced by treatment with both IFN-α or IFN-γ (Table 4; Fig 4I and 4J). Treatment with a combination of both interferons led to synergistic effects on HLA-A3 antigen expression of both cell lines. Small synergistic effects were also observed on HLA-Bw4 expression of the Mel 202 cells, whereas combined IFN treatment revealed small antagonistic effects on HLA-Bw4 expression of the 92-1 cells (Table 4).

In general, treatment of the 92-1 cells with IFN-α or IFN-γ led to an increase in expression of the HLA-A antigens with a factor 1.4–3.3, whereas the expression of the B antigens increased with a factor 4.7–6.6. For the Mel 202 cells the expression of the A antigens increased with a factor 1.3–2.9, whereas it is difficult to determine factors of enhancement of the HLA-B antigens, since the untreated cells showed hardly any expression of B antigens (Table 4).

Table 4 HLA class I and II expression in untreated and interferon-treated uveal melanoma cell lines as determined by FACS analysis*

<table>
<thead>
<tr>
<th>Cell line 92-1 (mFl/SEM)</th>
<th>Cell line Mel 202 (mFl/SEM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>IFN-α</td>
</tr>
<tr>
<td>HLA-ABC</td>
<td>17.1 (0.2)</td>
</tr>
<tr>
<td>B2 microgl</td>
<td>91.0 (1.6)</td>
</tr>
<tr>
<td>HLA-B</td>
<td>2.7 (0.1)</td>
</tr>
<tr>
<td>HLA-A2</td>
<td>106.9 (0.9)</td>
</tr>
<tr>
<td>HLA-A3</td>
<td>72.7 (1.9)</td>
</tr>
<tr>
<td>HLA-Bw4</td>
<td>2.0 (0.4)</td>
</tr>
<tr>
<td>HLA-DR</td>
<td>0.1 (0.6)</td>
</tr>
<tr>
<td>HLA-DP</td>
<td>0.3 (0.6)</td>
</tr>
</tbody>
</table>

*Data are expressed as mean fluorescence of two independent measurements after subtraction of background fluorescence (SEM).

Discussion

The present study demonstrated that two uveal melanoma cell lines differed in their susceptibility to the antiproliferative effects of interferons. IFN-γ inhibited cell multiplication of both cell lines, whereas IFN-α only influenced the proliferation of the 92-1 cell line. These findings are in agreement with the reported effect of IFN-α and IFN-γ on human cutaneous melanoma cells in vitro. Although the antiproliferative effects of IFN-γ were only determined at two different concentrations of the cytokines, the present results suggest that the growth inhibitory effects of IFN-α are dose dependent. Dose dependency has also been described for the antiproliferative effects of interferons on human cutaneous melanoma cells in vitro. However, despite dose related growth inhibitory actions of interferons in vitro, the in vivo effects of IFN treatment may be totally different. For example, in the treatment of human cutaneous melanoma with IFN-α no correlations could be observed between the administered dose and the clinical response. Additionally, Osanto et al. described an antiproliferative effect of IFN-α and IFN-γ on cell lines of human cutaneous melanoma in vitro, whereas none of the patients from whom the cell lines were derived responded to in vivo IFN treatment. From these data Osanto et al. deduced that other actions, like immunomodulation, might be more relevant in the induction of tumour
Effects of interferon alpha and gamma on human uveal melanoma cells in vitro

We, therefore, not only studied the effect of IFN-α and IFN-γ on proliferation, but also the modulation of antigen expression on uveal melanoma cells, specifically of the HLA class I and II antigens.

In order to determine changes in expression after IFN treatment at different concentrations, an indirect immunoperoxidase technique on cytospin preparations was used. An advantage of this technique is the visualisation of antigen expression, but with this technique it is difficult to determine small changes in staining intensity. For example, the already high level of expression of the monomorphic determinants of the HLA class I antigens on cytospin preparations of uveal melanoma cells made it impossible to study the effects of IFN-α or IFN-γ on these molecules. We therefore also performed FACS analysis which, in addition, made it possible to determine synergistic or antagonistic effects of interferons on expression of cell surface antigens. Although it is difficult to compare the results of the two techniques in a quantitative manner, the overall results of both techniques were in good agreement.

With regard to the monomorphic HLA class I antigens, both IFN-α and IFN-γ significantly enhanced the expression of these molecules, with IFN-γ being the most potent inducer. These findings are in agreement with previous reports concerning different types of tumours. The small synergistic effects of combined cytokine treatment are possibly due to the induction of cytokine receptors on the tumour cells.

Since allele specific binding of tumour specific antigens has been reported for cutaneous melanoma, for example, the allele specific modulation of antigen expression might be important in the development of effective antimelanoma immune responses in vivo. We therefore not only investigated the effects of
interferons on monomorphic HLA class I antigens, but also on different locus and allele specific HLA class I antigens. With regard to the 92-1 cells, treatment with IFN-α and IFN-γ increased the expression of both the HLA-A and B antigens, whereas the effects on the HLA-B antigens were stronger than on the HLA-A antigens. This phenomenon has been reported for human cutaneous melanoma cells as well. Similar results were shown for the Mel 202 cells. The fact that HLA-A2 expression on Mel 202 cells could not be induced with cytokine treatment is most probably due to the genetic absence of this allele. However, since the patient was not available for HLA typing, we could not test this hypothesis. Application of the two cytokines together led in some cases to small synergistic effects and in others to small antagonistic effects, with differences between the two cell lines. The significance of these findings is unclear, but makes it difficult to give clinical recommendations.

Expression of HLA class II antigens was not induced by IFN-α on either of the cell lines. On the other hand, IFN-γ did induce expression of class II on both cell lines, although only very small effects were observed for HLA class II antigens on the Mel 202 cells. Similar results were reported for cutaneous melanoma and several other types of tumors. However, Giacomini et al. reported that IFN-α could induce class II expression on cutaneous melanoma cells as well, but that IFN-γ is a much more potent inducer of class II expression. Although the exact mechanisms by which cytokines induce the expression of surface antigens are unknown, it has already been shown, for cutaneous melanoma, that IFN-γ requires de novo protein synthesis, while IFN-α does not, which might also be an explanation for the differential effects of IFN-α and IFN-γ on the uveal melanoma cells. The strongest effects of IFN-γ on class II expression were observed for the HLA-DR antigens. This is in agreement with previous reports on cutaneous melanoma.

The reasons for the antagonistic effects of combined IFN treatment on class II expression are unknown. With respect to the susceptibility of the melanoma cells to modulation of HLA antigen expression in general, differences were observed between the two different cell lines. This might reflect potential individual differences in responsiveness to treatment with interferons in vivo.

The authors thank Dr. J. G. A. Houbes and Ms. S. van der Burg (Immunohematology and Bloodbank, Leiden, the Netherlands) for kindly supplying the monoclonal antibodies directed against the monomorphic and allele specific HLA antigens. We are also grateful to Dr. H. I. Ploegh (the Netherlands Cancer Institute) for providing the monoclonal antibodies H10 and HCA2. We thank Ms. G. Bouma for her assistance in the proliferation assay and M. van der Keur for his assistance in the FACS experiments.

Effects of interferon alfa and gamma on human uveal melanoma cells in vitro

Rebai N, Malissen B, Pierres M, Accolla RS, Corte G, Mawas C. Distinct HLA-DR epitopes and distinct families of HLA-DR molecules defined by 15 monoclonal antibodies (mAb) either anti-DR or allo-anti Ia cross-reacting with human DR molecule. I. Cross-inhibition studies of mAb cell surface fixation and differential binding of mAb to detergent-solubilized HLA molecules immobilized to a solid phase by a first mAb. *Eur J Immunol* 1983; 13: 106-11.

Effects of interferon alfa and gamma on human uveal melanoma cells in vitro.

I de Waard-Siebinga, W M Creyghton, J Kool and M J Jager

doi: 10.1136/bjo.79.9.847

Updated information and services can be found at:
http://bjo.bmj.com/content/79/9/847

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/