LETTERS TO THE EDITOR

Subretinal Pseudomonas abscess after lung transplantation

EDITOR.—Subretinal abscess is an uncommon clinical entity. We report such a case in a lung transplant patient in whom the causative organism was identified only after surgical drainage.

CASE REPORT

A 23-year-old white male underwent bilateral sequential lung transplantation for cystic fibrosis. One month later he presented with a 6 day history of visual loss of the right eye following a 24 hour pyrexia. Visual acuity was hand movements in the right eye and 6/6 in the left. There was a right relative afferent pupillary defect associated with a mild anterior uveitis and slight vitreous haze. Funduscopy revealed a large creamy white mass beneath the superotemporal retina (Fig 1). The left eye was normal.

An earlier postoperative pyrexia had been ascribed to Pseudomonas species identified from sputum cultures and had responded to treatment. Subsequently he had remained well on azithromycin, cyclosporin, prednisolone, and prophylactic itraconazole. On ophthalmic presentation microbiological and serological investigation revealed only a rising cytomegalovirus (CMV) IgM titre. A clinical diagnosis of presumed CMV or Aspergillus infection was made and the patient was commenced on amphotericin B and ganciclovir.

Three days later a pars plicata vitrectomy was performed. Immediate microscopy (and subsequent culture) of the vitreous aspirate failed to reveal the causative organism. Consequently the subretinal abscess was drained through two retinotomies using a silicone tipped subretinal cannula. Following air-fluid exchange 1-2 ml saline containing 0-4 mg amikacin, 1 mg vancomycin, and 2-5 μg amphotericin B were injected into the vitreous cavity and the residual air space was then flushed with 25% perfluoropropane. The abscess fluid was demonstrated to contain Gram negative rods, later identified as Pseudomonas aeruginosa sensitive to colomycin and imipenem. A single dose of 0-3 mg colomycin was given into the vitreous cavity and a 2 week course of intravenous imipenem was begun. Following this the eye had an acuity of counting fingers and the view of the posterior pole was clear enough to reveal a flat retina with resolving subretinal lesions.

One month later the eye developed a retinal detachment associated with an infero-temporal dialysis and proliferative vitreoretinopathy (PVR) (CP2). This was repaired by lensectomy, epiretinal membrane peel, encirclement, and silicone oil fill.

Four months after the initial ophthalmic surgery the eye has a visual acuity of hand movements. Moderate recurrence of the PVR (CP2) has resulted in some retinal distortion (Fig 2). The patient remains well on continued immunsuppressive therapy.

Comment

Organ transplant patients are at increased risk of infection. This may occur at an unusual site, follow an atypical course, or involve opportunistic organisms, making clinical diagnosis difficult. Although subretinal abscess is uncommon it has been reported in association with intravenous drug abuse and immunosuppression after renal transplantation: in these cases Aspergillus species were considered to be the causative organisms. Although no previous reports of Pseudomonas subretinal abscess exist, the outcome from Gram negative endophthalmitis is considered particularly poor.

Since systemic investigation had failed to provide a definitive diagnosis, surgical drainage of the subretinal lesion was considered necessary for diagnostic and therapeutic reasons. Transcleral and internal approaches were considered: the chosen approach via vitrectomy and retinotomy has been described previously in the successful management of a subretinal abscess.

In common with similar cases, the correct diagnosis of the presumed systemic infection was made only with the benefit of ophthalmic sampling for microbiological examination. With the benefit of this, systemic recovery with an acceptable ophthalmic outcome was achieved.

K AGARWAL
Freeman Hospital, Freeman Road, Newcastle-upon-Tyne NE3 2SG

Correspondence to: Dr D G Cottrell.

Accepted for publication 4 April 1995


Peripheral retinal neovascularisation associated with scleral encirclement

EDITOR.—Retinal detachment repair by scleral buckling may rarely give rise to ischaemia. We report a case in which peripheral retinal neovascularisation developed some time after the application of an encircling scleral buckle, and regressed after it was cut.

CASE REPORT

An 80-year-old white man presented in August 1993, with a 24 hour history of sudden onset blurring of the left vision. He had undergone left intracapsular cataract extraction in 1980, left rhegmatogenous retinal detachment repair with an encircling band in 1990, and vitrectomy, internal drainage, and silicone oil tamponade for re-detachment in July 1992. The silicone oil was removed in June 1993. The right eye was blind following penetrating injury in 1992. He took β blockers regularly for hypertension and he smoked cigarettes.

Figure 1

Figure 1A

Figure 1B

Figure 1. Rubosis iridis present before (A) and absent after (B) cutting of the encircling band.
induced by the right encircling band, possibly predisposed by his systemic hypertension and long history of cigarette smoking.

Anterior segment ischaemia is a rare but recognised complication of scleral buckling surgery, with a reported incidence of 3% in a general retinal detachment population but is far more common (71%) in patients with sickle SC disease.3 It presents typically soon after surgery with corneal oedema, anterior chamber flare, and ocular hypotension. The ischaemia may be due to either impaired blood supply to4 or venous return from the anterior segment. A tight encircling band might impair both the long posterior ciliary arteries, which contribute to the choroidal circulation, and the choroidal venous drainage. The anterior ciliary arteries may also be compressed by an explant placed under the rectus muscles. These vessels and the vortex veins may also be damaged peroperatively by diathermy, cryotherapy, or detachment of two or more rectus muscles.

However, the onset of ischaemic signs in the present case was later than is typical for anterior segment ischaemia, and ruberosis iridis is also atypical. Ocular ischaemic syndrome, which may occur in older men and result in neovascular glaucoma and visual loss, is also a possibility. Carotid and retinal Doppler ultrasound studies were obtained only postoperatively in this patient, but showed no abnormality. This case has many similarities with anterior hyaloidal fibrovascular proliferation described in diabetics following vitrectomy and cataract surgery.5 This has only been reported in diabetics, and usually those with active proliferative retinopathy. Diabetes mellitus was excluded in this patient, however, and the 1 year interval between vitrectomy and the neovascularisation is longer than would be expected.

The causative role for the band in the ischaemia in this case is strongly suggested by the distribution of the retinal neovascularisation anteriorly but not posteriorly, and the rapid regression of both the iridal and retinal neovascularisation once the band was removed; increased retinal artery blood flow has been demonstrated following removal of encircling elements.6 Retinal neovascularisation is an unusual complication of scleral encirclement surgery.

The patient suffered a vitreous haemorrhage owing to the development of retinal neovascularisation arising anterior to the scleral indent with normal retina posteriorly. We believe that he had chronic ischaemia of the retinal periphery and anterior segment,
Peripheral retinal neovascularisation associated with scleral encirclement.

I G Duguid, J D McHugh and R K Blach

doi: 10.1136/bjo.79.9.861-a

Updated information and services can be found at:
http://bjo.bmj.com/content/79/9/861.2.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/