Retinopathy of prematurity screening, stress related responses, the role of nesting

M Slevin, J F A Murphy, L Daly, M O'Keefe

Abstract

Aims/background—In a prospective study the degree of distress caused by retinopathy of prematurity (ROP) screening in a cohort of preterm infants was assessed and the modifying effects of nesting in reducing their discomfort was evaluated. **Methods**—38 preterm infants were included in the study. 19 infants were placed in a nest with boundaries (intervention group) and 19 infants were placed on a cot blanket (control group). Observations were made 2 minutes before, throughout, and 2 minutes after ROP examination. The factors observed were crying responses, neurobehavioural activity, and physiological changes (heart rate, oxygen saturation). Recordings were made using a video camera for crying and neurobehavioural activity and an Oxympleth monitor for heart rate and oxygen saturation. **Results**—During ROP screening, the total group of 38 infants (nested and non-nested combined) displayed increased neurobehavioural activity (p<0.01) and crying (p<0.01). The increased activity and crying coincided with the invasive part of the procedure. The distress caused by ROP screening was significantly less for the nested group compared with the non-nested group for both movement activity (p<0.01) and crying (p<0.01). The physiological data, heart rate, and oxygen saturation were not statistically significant. **Conclusion**—ROP screening is distressing for preterm infants. Nesting can significantly reduce this discomfort. The findings in this study are of value in designing more optimal ROP examination schedules for infants. (Br J Ophthalmol 1997;81:762–764)

Retinopathy of prematurity (ROP) is responsible for 40% of perinatally derived blindness. Screening for ROP became practicable in the 1970s with the advent of indirect ophthalmoscopy. An international classification for recording the retinal findings was a further significant advance. The need for early diagnosis of ROP became obligatory with the advent of successful treatment with cryotherapy. Subsequently, laser therapy has been shown to be as effective but with a further significant reduction in myopia. The 1995 working party report of the Royal College of Ophthalmologists and The British Association of Perinatal Medicine recommended that the early identification of ROP by screening should be standard practice. Consensus statements on this subject have also been issued by the American Academy of Pediatrics. Screening is now recommended for all infants of 31 weeks' gestation or less at birth and weighing 1500 g or less. The first examination should be performed when the infant is 31 weeks' postmenstrual age.

ROP screening would appear to be both uncomfortable and painful for the preterm infant owing to the nature of the examination which involves the insertion of a speculum, use of an indentor, and a considerable amount of handling. To date, this discomfort and distress have not been widely appreciated. This study was mounted to evaluate the degree of disturbance caused by the procedure. In addition, we modified the technique by nesting half of the infants in an attempt to reduce the adverse effects of the examination.

Patients and methods

The study population was a cohort of 38 preterm infants, gestation <32 weeks, birth weight <1500 g, undergoing ROP screening. Parental consent was obtained. We divided the 38 infants into two groups, 19 infants in the nested (intervention) group, and 19 infants in the non-nested (control) group. The mean gestational age and birth weight for the nested and non-nested infants was 29.9 weeks, 1251 g, and 28.8 weeks, 1149 g respectively. The infants were 31 weeks' postmenstrual age when screened.

Before screening, the nested infants were placed on a soft padded surface with boundaries that helped to maintain and support them in a flexed position but still facilitated un-restricted movement of their body and limbs. This nesting concept with Bendy Bunting was restricted movement of their body and limbs. None of the infants in the study was swaddled. Both groups of infants were thus able to move freely without any restriction.

The ophthalmic preparations for screening included the instillation of 2.5% phenylephrine and 0.5% cyclopentolate mydriatic eyedrops administered 60 and 30 minutes before the examination. Topical anaesthesia was not used as previous experience in our unit had not shown it to be of benefit (M O'K). An eyelid speculum was inserted and screening was conducted using an indirect ophthalmoscope with a 30 dioptre lens. Scleral indentation was not
Table 1 ROP screening, movement activity responses, nested and non-nested infants (median values)

<table>
<thead>
<tr>
<th>Infants</th>
<th>Before</th>
<th>Procedure</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D</td>
<td>P</td>
<td>T</td>
</tr>
<tr>
<td>Nested (n=19)</td>
<td>14</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>Non-nested (n=19)</td>
<td>37</td>
<td>47</td>
<td>8</td>
</tr>
</tbody>
</table>

D = distal; P = proximal; T = truncal.

The factors recorded were the infants' crying patterns, neurobehavioural activity, and physiological responses—namely, heart rate and oxygen saturation. A colour video camera with audiovisual facilities was used to record the infants' neurobehavioural activity and cry patterns. Heart rate and oxygen saturation concentrations were recorded with an Oxypleth monitor.

Recordings of all variables were made for 2 minutes before screening, throughout screening, and 2 minutes after screening. During video playback, using stop and freeze frame techniques, the infants' body movements were counted and analysed using a behavioural check sheet. For purposes of analysis, the infants' movements were divided into three categories: distal limb (hand, foot, digits), proximal limb (arm, leg), and truncal (trunk, head) movements. The results were expressed for each infant as the total number of movements per 2 minutes. Median values for the three epochs—before, during, and after screening were then calculated.

During video playback, the infants' cry patterns were observed. The two factors documented were time to onset of crying and the total duration of crying.

In the case of the physiological data, the median heart rate and oxygen saturation concentrations were calculated for the three epochs—before, during, and after screening.

The non-parametric sign test was used to compare the responses before and during the procedure for the total group of 38 infants. The Wilcoxon signed rank test was used to compare median values in the two groups of infants. A 1% and 5% two sided level of significance was calculated.

Results

The infants' activity increased during the screening procedure. For the total cohort of 38 infants (nested and non-nested combined), the distal limb (p<0.01), proximal limb (p<0.01), and truncal (p<0.01) movements were significantly greater during the examination. The responses coincided with the onset of eyelid speculum opening and quickly abated once the speculum was removed. Crying, which was one of the outcome variables, occurred only during the eye examination and ceased once it was completed.

When the nested and non-nested groups were compared (Table 1), the movement responses were significantly different for all three epochs, 2 minutes before screening (p<0.01 for distal, proximal, truncal movements), during screening (p<0.01 for truncal movements), 2 minutes after screening (p<0.01 for distal, proximal, truncal movements). Overall, there was less infant activity in the nested group.

Table 2 shows the crying response profiles for the nested and non-nested infants. These data showed that the non-nested infants started to cry earlier and that they cried for longer. The time to onset of crying in the nested and non-nested infants was 61 seconds and 11 seconds respectively. The total crying time was 11.8 seconds for the nested infants and 92.4 seconds for the non-nested group.

Individual infants showed tachycardia and oxygen desaturation but the median values did not demonstrate any significant differences for the procedure or between the nested and non-nested groups.

Discussion

Two findings emerge from this study. Firstly, ROP screening is distressing for preterm infants. Secondly, modification of the procedure or between the nested and non-nested infants. These data showed that the non-nested infants started to cry earlier and that they cried for longer. The time to onset of crying in the nested and non-nested infants was 61 seconds and 11 seconds respectively. The total crying time was 11.8 seconds for the nested infants and 92.4 seconds for the non-nested group.

Individual infants showed tachycardia and oxygen desaturation but the median values did not demonstrate any significant differences for the procedure or between the nested and non-nested groups.

Discussion

Two findings emerge from this study. Firstly, ROP screening is distressing for preterm infants. Secondly, modification of the procedure or between the nested and non-nested infants. These data showed that the non-nested infants started to cry earlier and that they cried for longer. The time to onset of crying in the nested and non-nested infants was 61 seconds and 11 seconds respectively. The total crying time was 11.8 seconds for the nested infants and 92.4 seconds for the non-nested group.

Individual infants showed tachycardia and oxygen desaturation but the median values did not demonstrate any significant differences for the procedure or between the nested and non-nested groups.

Discussion

Two findings emerge from this study. Firstly, ROP screening is distressing for preterm infants. Secondly, modification of the procedure or between the nested and non-nested infants. These data showed that the non-nested infants started to cry earlier and that they cried for longer. The time to onset of crying in the nested and non-nested infants was 61 seconds and 11 seconds respectively. The total crying time was 11.8 seconds for the nested infants and 92.4 seconds for the non-nested group.

Individual infants showed tachycardia and oxygen desaturation but the median values did not demonstrate any significant differences for the procedure or between the nested and non-nested groups.

Discussion

Two findings emerge from this study. Firstly, ROP screening is distressing for preterm infants. Secondly, modification of the procedure or between the nested and non-nested infants. These data showed that the non-nested infants started to cry earlier and that they cried for longer. The time to onset of crying in the nested and non-nested infants was 61 seconds and 11 seconds respectively. The total crying time was 11.8 seconds for the nested infants and 92.4 seconds for the non-nested group.

Individual infants showed tachycardia and oxygen desaturation but the median values did not demonstrate any significant differences for the procedure or between the nested and non-nested groups.

Discussion

Two findings emerge from this study. Firstly, ROP screening is distressing for preterm infants. Secondly, modification of the procedure or between the nested and non-nested infants. These data showed that the non-nested infants started to cry earlier and that they cried for longer. The time to onset of crying in the nested and non-nested infants was 61 seconds and 11 seconds respectively. The total crying time was 11.8 seconds for the nested infants and 92.4 seconds for the non-nested group.

Individual infants showed tachycardia and oxygen desaturation but the median values did not demonstrate any significant differences for the procedure or between the nested and non-nested groups.
of oxygen where necessary. Thus, we found that the physiological data were less informative than the neurobehavioural findings and crying patterns in pinpointing an infant’s distress. This may be due to the fact that the neurobehavioural activity and crying responses seem to be more event oriented. We found that our infants settled as soon as the speculum was withdrawn. A recent review of 20 studies about pain, its assessment and management, revealed that physiological data were the main outcome variable in 50%, crying time in 40%, and behavioural responses in 20% of the papers. We combined all three methods in our study and would conclude that crying and behavioural responses work best when immediate assessments of pain and discomfort have to be made and acted upon. When babies are in pain, they express themselves both physically and verbally. The altered neurobehavioural and crying patterns observed in this study clearly illustrate this point. The changes in body and limb activity may be more important for the more preterm babies whose cry is weak and of low intensity.

There is increasing interest in the application of non-pharmacological measures in the alleviation of pain associated with invasive procedures in the newborn. Interventions such as the promotion of physical containment during feeding and handling are measures now widely recommended to reduce stress responses in preterm infants. Infants are now perceived as individuals and are no longer viewed as a homogenous group. Babies respond differently to invasive procedures. One of the innovations of this individualised approach to care has been the recognition of the value of cot bedding and the provision of boundaries. These formed part of Als and colleagues’ seminal study. This developmental concept has now become more formalised with the introduction of specific nesting items such as Bendy Bunting. Many neonatal units are designing more optimal ROP examination schedules for preterm infants.

In summary we have observed that ROP screening can be distressing. We have demonstrated that nesting can significantly reduce that distress. These findings are of value in designing more optimal ROP examination schedules for preterm infants.

MS was in receipt of grants from the Health and Research Board and The Research College National Maternity Hospital.

Retinopathy of prematurity screening, stress related responses, the role of nesting

M Slevin, J F A Murphy, L Daly and M O'Keefe

doi: 10.1136/bjo.81.9.762

Updated information and services can be found at:
http://bjo.bmj.com/content/81/9/762

These include:

References
This article cites 14 articles, 11 of which you can access for free at:
http://bjo.bmj.com/content/81/9/762#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
- Epidemiology (1068)
- Paediatrics (358)
- Retina (1608)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/