LETTERS TO THE EDITOR

Congenital toxoplasma chorioretinitis transmitted by preconceptionally immune women

EDITOR,—During pregnancy primary toxoplasmic infection of the mother is a well-known cause of congenital choriorétinitis due to fetal contamination by Toxoplasma gondii. It is generally thought that women infected before conception have no risk of transmitting the disease to the fetus unless they are severely immunocompromised.1 We report two children with severe ocular lesions due to congenital toxoplasmosis transmitted by preconceptionally immune mothers.

CASE 1
A 1 year old girl presented with a convergent squint as a consequence of bilateral large macular scars. She was the first child of a healthy immunocompetent mother. Three months before conception, the systematic French prenatal serological screening of the mother showed a recent toxoplasmic infection diagnosed by a high titre of specific immunoglobulin M (IgM) (IgM 5200, Biotrol Merck (normal <200), IgG= 40 IU/ml) (Table 1). She was treated with spiramycin 3 MIU per day for a month. At the time of referral, the mother's titre of IgM had significantly decreased (IgM 200) and showed a slightly higher rate of IgG (140 IU/ml). Her daughter's serological status showed a high titre of specific IgG (624 IU/ml), the presence of specific IgA (6/12 index ISAGA); immunosorbent agglutination assay, Biotrol, index 0–12) and specific IgM (11/12 index ELISA) confirming a fetal infection. Intraocular manifestations, suggestive of congenital toxoplasmosis, were found on the computerized tomogram (Fig 1). The child was otherwise healthy and was not treated.

CASE 2
A 1 month old boy was referred because of a congenital cataract in the right eye and a macular atrophic lesion surrounded by an active whitish ring. He was the third child of an immunocompetent woman, a native of Saint-Domingue (Haïti). She had long-standing toxoplasmosis immunity, confirmed by the absence of specific IgG and stable IgG rates at the fourth and the 10th weeks of her pregnancy (ELISA, IgG 49 and 54 IU/ml respectively) providing proof of an anterior toxoplasmic infection (Table 1). The serology of the neonate showed evidence of active T gondii infection with a high IgG titre (ELISA >1200 IU/ml), a positive specific IgM (10/12 index ISAGA) as well as a positive specific IgA (6/12 specific ISAGA). The serological study of the mother, after the birth, showed a dramatically increased level of IgG (ELISA IgG > 1200 IU/ml) with specific IgA (12/12 index ISAGA); however, no specific IgM was detected. The child was operated on for his cataract and was treated orally with pyrimethamine and sulphasalazine.

COMMENT
Congenital chorioretinitis may be a challenging clinical situation for which fetal infections must be considered, in particular, congenital toxoplasmosis.

Because of the concept that the offspring of an immune woman is protected, the diagnosis of infection by T gondii may be overlooked in rare cases especially when there are only ocular manifestations.

In our two cases, the mothers were considered to be immune to T gondii; nevertheless, they transmitted the disease to their children who presented with sight threatening manifestations and no systemic symptoms. The mothers were not immunocompromised, thus excluding toxoplasmosis reactivation due to immunodeficiency. Different pathophysiological mechanisms may be suggested and may be illustrated by our two cases.

Regarding our first patient, it has been reported recently that, exceptionally, congenital toxoplasmosis may be a consequence of primary maternal toxoplasmosis infection preceding conception.1,2 Despite medical treatment, the parasitaemia may remain active even months after the onset of the disease and could be responsible for fetal contamination. An emerging immune response as well as the mother's treatment, reducing the parasitaemia of the child, may explain the attenuated clinical manifestation7 leading to ocular manifestations without other clinical systemic involvement and without miscarriage.

The development of toxoplasmosis in the second case may be explained by reinfection of the mother.8 The mother's positive specific IgA suggested that there was reinfection of the mother by the parasite, as these immunoglobulins are produced during the acute phase of the acute infection. The signs of different virulence have been described, and reinfection by a particularly virulent strain could explain the inability of the mother's immune system to protect the fetus.9 The absence of IgM in the mother after the birth of the child is striking and the origin remains unclear although a similar serological status has already been described in a case of spontaneous abortion due to presumed reinfection of a preconceptionally immune mother.10

The possibility of the rupture of endometrial toxoplasmic cysts, contaminating the fetus during pregnancy or at birth, can be raised according to Langer11 but this theory has been considered with reservation by other authors.12 Nevertheless, because of the IgA level in the mother of our second patient, we assume that there is reinfection and not reactivation.

Consecutive toxoplasmic infection in siblings may occur. Indeed, siblings with ocular toxoplasmosis have been reported13 and pose the question of congenital or acquired origin of these iterative intrafamilial toxoplasmic infections. In none of these papers has the congenital origin of the infection been proved calling into question congenital reinfection of these siblings.

Positive toxoplasmic screening before or at the beginning of the pregnancy may be wrongly reassuring and may lead to an underestimate the toxoplasmic origin of some congenital chorioretinitis. The presentation of these two children with severe ocular manifestations of congenital toxoplasmosis shows indeed that this diagnosis cannot be totally excluded even if the mother has been infected by the parasite before conception.

We thank Mr Carlos Pavelos (London), consultant ophthalmic surgeon, for interesting comments concerning our two cases and Mr Phillip Harris (Edinburgh) for his help.

HElÈNE DOLLFUS
PASCAL DUREAU
Service d’Ophthalmologie, Hôpital Necker-Enfants Malades, Université Paris V, Paris, France

CHRISTOPHE HENNEQUIN
Service de Microbiologie, Hôpital Necker-Enfants Malades, Université Paris V, Paris, France

YVES UTEZA
Service d’Ophthalmologie, Hôpital Necker-Enfants Malades, Université Paris V, Paris, France

ALAIN BRON
Service d’Ophthalmologie, Hôpital Général de Dijon, Dijon, France

JEAN LOUIS DUFIER
Service d’Ophthalmologie, Hôpital Necker-Enfants Malades, Université Paris V, Paris, France

Correspondence to: Dr Hélène Dollfus, 8 Avenue des Vosges, 67140 Barr, France.
Accepted for publication 3 June 1998

Table 1 Main serological findings in the two cases

<table>
<thead>
<tr>
<th>Case</th>
<th>Child</th>
<th>Mother before conception</th>
<th>Mother after birth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IgM</td>
<td>IgG</td>
<td>IgA</td>
</tr>
<tr>
<td>Case 1</td>
<td>+</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Case 2</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Level of specific antibodies against Toxoplasma gondii (+ to ++ present, – not present, or [NA] not available.


Figure 1 Intracerebral calcifications (arrows) suggestive of congenital toxoplasmosis found on the computed tomogram.
Shiny and ocular trauma in north west Scotland

EDITOR,—Sports related eye injuries account for up to 42% of ocular trauma requiring hospitalisation1 and 10% of ruptured globes.2 The commonest cause of sports related ocular trauma seen in this department is shiny.3

Shiny is a parochial game with a devoted following and a playing area which stretches from Argyll and Bute in the south to Inverness in the east to Skye in the west. It is derived from hurling and is thought to have been introduced by St Bridget who travelled to Scotland with St Columba to promote christianity in the highlands.

The game itself is not unlike hockey with two opposing teams who attempt to score more goals than the opposition using a curved stick or “caman”. Two notable differences exist between the two games, however. There is no restriction on the height above which the caman may be raised or above which the ball may travel.

We report two cases of ocular trauma which are representative of the cases commonly seen in this department during the shiny season.

CASE 1
A 30 year old man was admitted after being struck on the face with a shiny stick.

Visual acuity was perception of light only. A 10 mm horizontal upper lid laceration was noted with a 200 degree superior iridodialysis. The lens was luxated inferiorly with zonular dehiscence above. Intraocular pressure was 15 mm Hg with no orbital fracture.

After initial primary repair of the lid the patient was treated with topical steroids and antibiotics. The eye settled with visual acuity of counting fingers. One month after the original injury an acute rise in intraocular pressure to 54 mm Hg was lowered medically with no identifiable lens. A primary enucleation was performed. The patient currently has visual acuity of 6/5 in the right eye with no evidence of sympathetic ophthalmia.

COMMENT
Shiny related ocular trauma causes significant ocular morbidity and occasionally the injuries are devastating. Patients are exclusively male.

Unfortunately, the globe is particularly vulnerable owing to the nature and dimensions of the equipment used in shiny. The diameter of the ball (6.03–6.36 cm) and the head of the caman (no greater than 6 cm wide)1 allow portions of both to traumatise the globe with only partial protection from the orbital rim. The ball is also very hard, comprising an inner core of dense cork with an outer layer of leather1 and can reach speeds of up to 80 miles per hour.

The recent spate of shiny related injuries has reopened the debate as to whether the wearing of faceguards or helmets should be compulsory during formal matches and practice sessions. At present, such protection is optional, including physical education at school.

We feel that faceguards and helmets should be worn at all levels of the game and should be compulsory with particular emphasis on enforcement at school and junior levels. Until the traditionalists who feel that the game is in some way “spoiled” by protective headgear relent, this easily preventable sports injury will continue to cause serious ocular morbidity in the highlands of Scotland.

AT PURDIE

References

Correspondence to: Dr Purdie. Accepted for publication 3 June 1998

Ultrastructural alterations in the stroma adjacent to non-inflamatory corneal perforations associated with long standing rheumatoid arthritis

EDITOR,—Patients with rheumatoid arthritis commonly have two types of corneal ulceration. One is a peripheral corneal ulceration thought to be caused by complex mediated hypersensitivity.1 The other is a paracentral corneal ulceration that tends to perforate the cornea rapidly. Its pathogenesis remains unknown, though a key feature is the lack of inflammation, leading to the suggestion that it is the result of surface disease (drying).

CASE REPORTS
We examined two individualis, a 38 year old woman and a 76 year old woman, with unilateral corneal epithelial defects and aqueous tear deficiencies. Both patients had been treated for rheumatoid arthritis for several years; however, neither had been on systemic corticosteroids. The 76 year old had had successful cataract surgery 1 week previously and was using 0.1% betamethasone eye drops. At the time of presentation both women had severe dry eye (possibly secondary Sjogren’s syndrome, though no biopsies were taken to confirm this) as assessed by detailed slit lamp examination with fluorescein and rose bengal staining, and by the Schirmer test. The 38 year old and a 76 year old after surgery, with no sign of another perforation.

At the time of surgery, corneal tissue directly adjacent to the paracentral perforation, as well as tissue in the peripheral cornea, was obtained for histopathological study. In line with the lack of clinically detectable inflammation (Fig 1), light microscopic examination of both cases revealed only a few inflammatory cells surrounding the perforation and none in more peripheral areas (data not shown). In both patients’ corneas, electron microscopy documented many electron dense deposits in the extracellular stromal matrix (Fig 2). These amorphous deposits were intimately associated with collagen, and might represent degraded and/or aggregating collagen fibrils resulting from the melting process. Also detected were numerous atypical, thin fibrils (Fig 2, inset). These were fairly widely interspersed with normal diameter collagen though, on occasion, they appeared in groups. Interestingly, these abnormal electron microscopic features were observed not only in stroma right at the edge of the perforation, but in more peripheral regions of the cornea as well.

COMMENT
The general clinical presentations of both these individuals, especially the lack of inflammation, are similar to previous reports of perforated paracentral corneas.2 Often, infiltrating macrophages and T cells that are associated with HLA class II antigens are located around corneal ulcers, and various

Fig 1 Paracentral corneal perforation (38 year old woman). There is little or no inflammation on the ocular surface. The anterior chamber is maintained by a therapeutic contact lens.

Letters


15 mm Hg with no orbital fracture.

References

Correspondence to: Dr Purdie. Accepted for publication 3 June 1998

Ultrastructural alterations in the stroma adjacent to non-inflamatory corneal perforations associated with long standing rheumatoid arthritis

EDITOR,—Patients with rheumatoid arthritis commonly have two types of corneal ulceration. One is a peripheral corneal ulceration thought to be caused by complex mediated hypersensitivity.1 The other is a paracentral corneal ulceration that tends to perforate the cornea rapidly. Its pathogenesis remains unknown, though a key feature is the lack of inflammation, leading to the suggestion that it is the result of surface disease (drying).

CASE REPORTS
We examined two individualis, a 38 year old woman and a 76 year old woman, with unilateral corneal epithelial defects and aqueous tear deficiencies. Both patients had been treated for rheumatoid arthritis for several years; however, neither had been on systemic corticosteroids. The 76 year old had had successful cataract surgery 1 week previously and was using 0.1% betamethasone eye drops. At the time of presentation both women had severe dry eye (possibly secondary Sjogren’s syndrome, though no biopsies were taken to confirm this) as assessed by detailed slit lamp examination with fluorescein and rose bengal staining, and by the Schirmer test. The 38 year old and a 76 year old after surgery, with no sign of another perforation.

At the time of surgery, corneal tissue directly adjacent to the paracentral perforation, as well as tissue in the peripheral cornea, was obtained for histopathological study. In line with the lack of clinically detectable inflammation (Fig 1), light microscopic examination of both cases revealed only a few inflammatory cells surrounding the perforation and none in more peripheral areas (data not shown). In both patients’ corneas, electron microscopy documented many electron dense deposits in the extracellular stromal matrix (Fig 2). These amorphous deposits were intimately associated with collagen, and might represent degraded and/or aggregating collagen fibrils resulting from the melting process. Also detected were numerous atypical, thin fibrils (Fig 2, inset). These were fairly widely interspersed with normal diameter collagen though, on occasion, they appeared in groups. Interestingly, these abnormal electron microscopic features were observed not only in stroma right at the edge of the perforation, but in more peripheral regions of the cornea as well.

COMMENT
The general clinical presentations of both these individuals, especially the lack of inflammation, are similar to previous reports of perforated paracentral corneas.2 Often, infiltrating macrophages and T cells that are associated with HLA class II antigens are located around corneal ulcers, and various
cytokines and proteases secreted from these cells are thought to trigger a corneal perforation. However, this pathogenesis is unlikely in our cases because little or no inflammatory cell infiltration was detected.

As in all connective tissues, collagen imparts to stroma by far the majority of its tensile strength. It follows that ultrastructural collagen alterations might cause our patients’ corneas to become somewhat fragile, predisposing them to non-inflammatory corneal perforations. With this in mind, it is noteworthy that the alterations of the corneal extracellular matrix we report here closely resemble those seen in ruptured hand tendons of rheumatoid arthritis patients. It is possible, therefore, that a similar structural weakening of both these connective tissues occurs and is associated with collagen abnormalities in long standing rheumatoid arthritis.

WAKAKO ADACHI
KOHI NISHIDA
ANDREW I QUANTOCK
SHIGERU KINOSHITA

Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan

YASUO ISHI

Department of Ophthalmology, Shinkawabashi General Hospital, Tokyo, Japan

Correspondence to: Kohji Nishida, MD, PhD, Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji, Kyoto 602, Japan.

Accepted for publication 29 July 1998

Figure 2 Corneal stroma surrounding the perforated area (76 year old woman). Electron dense material (arrow), possibly aggregated collagen, is located throughout the extracellular matrix. Also (inset), narrow, optically thin fibres (arrowheads) are interwoven with collagen. Bar=200 nm (main figure) and 100 nm (inset).

Table 1 Kinetics of anti-toxoplasmic IgG, IgM and IgA antibodies (months) from the first serological tests at the time of onset of cervical adenopathies (T0). 78 months corresponds to the first immunological study in para-surgical laboratory and 175 months to the onset of chorioretinitis. Note that the first serological tests (undertaken in another laboratory) were based only on immunoenzymatic methodology (IgG and IgM (MEIA)).

<table>
<thead>
<tr>
<th>Methods</th>
<th>IgG-Ab (MEIA) (IU/ml)</th>
<th>IgG-Ab (ICT-M) (U/HSDA/ml)</th>
<th>IgM-Ab (MEIA) (index)</th>
<th>IgM-Ab (ICT-M) (U/HSDA/ml)</th>
<th>IgA-Ab (ICT-A)</th>
<th>IgA-Ab (ICT-M) (U/HSDA/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cut off</td>
<td>3</td>
<td>10</td>
<td>0.5</td>
<td>9</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>T 0.5 (onset of cervical adenopathies)</td>
<td>71</td>
<td>ND</td>
<td>9.9</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>T 2</td>
<td>855</td>
<td>ND</td>
<td>8.3</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>T 4</td>
<td>4030</td>
<td>ND</td>
<td>3.6</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>T 8 (pregnancy contraindicated)</td>
<td>4200</td>
<td>ND</td>
<td>1.5</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>T 12</td>
<td>880</td>
<td>6400</td>
<td>1.4</td>
<td>11</td>
<td>10.5</td>
<td>10</td>
</tr>
<tr>
<td>T 15 (onset of chorioretinitis)</td>
<td>680</td>
<td>6400</td>
<td>1.1</td>
<td>11</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>


Comment

This case is unusual in that a chorioretinal toxoplasmosis lesion occurred 15 months after seroconversion in a healthy adult.

The precise date of infection was deduced from clinical arguments and the results of biological tests. The first battery of serological tests, at the onset of cervical adenopathies (T0), was carried out because the patient was intending to have children. Eight months later the persistence of specific IgA antibodies pointed to active toxoplasmosis. As we had previously observed cases of congenital transmission after preconceptional seroconversion with adenopathies, the patient was advised not to become pregnant yet. This position was borne out by the onset of chorioretinitis some months later. The ocular involvement was confirmed by sampling the anterior chamber (positive Witmer–Desmonts coefficient, and focal synthesis of specific IgA) less than 8 days after the onset of visual disorders.

Ocular lesions were long considered to be a sometimes very late complication of congenital toxoplasmosis, except in case of immunodepression (human immunodeficiency virus, organ transplantation, etc.). Our patient’s immune status was strictly normal; she was without previous toxoplasmic lesion and no symptoms of acute toxoplasmosis. The patient was tested for toxoplasmosis DNA by polymerase chain reaction (PCR) and/or blood circulating T. gondii research, and for specific IgG, IgM, and IgA antibodies by immunocapture tests; the Witmer–Desmonts coefficient (C) was calculated. Serological tests for viral and other parasitic infections were also done, and her immune status was thoroughly investigated (Table 2). Anti-toxoplasma chemotherapy started immediately, with a combination of pyrimethamine-sulphadiazine and calcium folinate for 1 month. The visual disorders improved and the chorioretinal lesion healed rapidly.

*Detection of IgG antibodies by high sensitivity direct agglutination (HSDA).
†Detection of IgM and IgA antibodies by immunocapture test with revelation by a tachyzoite suspension (ICT-M, ICT-A).
Table 2 Results of the different tests performed on serum and aqueous humour

<table>
<thead>
<tr>
<th></th>
<th>Blood/ serum</th>
<th>Aqueous humour</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herpesvirus, CMV, EBV, Lyme, Larva migrans</td>
<td>Negative</td>
<td>ND</td>
<td>No viral or other parasitic infection</td>
</tr>
<tr>
<td>HIV</td>
<td>Negative</td>
<td>ND</td>
<td>HIV seronegative</td>
</tr>
<tr>
<td>Immunological examination and lymphocyte subpopulations</td>
<td>Normal</td>
<td>ND</td>
<td>No immune deficiency</td>
</tr>
<tr>
<td>T gondii DNA</td>
<td>Negative</td>
<td>Positive with one probe</td>
<td>Doubtful result on aqueous humour</td>
</tr>
<tr>
<td>Total IgG g/l</td>
<td>12.8</td>
<td>0.056</td>
<td>Witmer–Desmonts coefficient: 4.6 (suggesting local IgG-Ab synthesis)</td>
</tr>
<tr>
<td>Anti-toxoplasmic IgG (U/HSDA/ml)</td>
<td>6400</td>
<td>128</td>
<td>Presence of serum IgM-Ab; no intracellular IgM-Ab synthesis</td>
</tr>
<tr>
<td>Specific IgM (ICT-M)</td>
<td>11/12</td>
<td>0/4</td>
<td>Presence of serum IgG-Ab; intracellular IgG-Ab synthesis</td>
</tr>
<tr>
<td>Specific IgA (ICT-FA)</td>
<td>10/12</td>
<td>4/4</td>
<td>No circulating toxoplasma</td>
</tr>
</tbody>
</table>

ND = not done.

not on immunosuppressive drugs and had no intercurrent infections. The persistence of two small cervical adenopathies and specific IgA antibodies 15 months after the primary infection illustrates the long duration of the active phase of infection in this case complicated by secondary chorioretinitis. With a well defined interval before onset, this case of chorioretinal involvement (isolated, unilateral, and without pre-existing lesions) differs from other reported cases in which the date of seroconversion was not precise and the choriorretinitis was often associated with neurological manifestations. 1, 9-11

This case of secondary toxoplasmic chorioretinitis in an immunocompetent woman suggests that all patients with persistent adenopathies and serological markers of active T gondii infection should have regular ocular monitoring.

Financial support was provided by the Programme Hospitalier de Recherche Clinique (1994), Direction des Hopitaux, Ministere des Affaires Sociales, de la Santé et de la Ville, Paris, France.

C MARX-CHEMLA
I VILLENA
F FOUARDINIER
J M PINON
Reims Toxoplasmosis Group, Laboratoire Parasitologie, Hôpital Maison Blanche (UPRESA 2070, IFR 53), CHU, Reims Cedex France

A GOTZAMANIS
F HAMON
A DUCASSE
Reims Toxoplasmosis Group, Services Ophtalmologie, Hôpital Robert Debré, CHU, Reims Cedex France

Correspondence to: C. Marx-Chemla, Laboratoire de Parasitologie, Hôpital Maison Blanche, 45 rue Coq d'or, 51092 Reims Cedex France. Accepted for publication 18 June 1998


Figure 1 Scarring in left cornea, case 1.

Figure 2 Final scarring pattern of panretinal photocoagulation as seen typically in both patients.
laser (488–514.5 nm). This is due to the lower absorption within melanin of the longer diode laser wavelength. Hence there is potentially a greater risk of choroidal nerve damage from the diode laser, particularly with an excessively intense burn. The burn size associated with indirect laser tends to be larger than that achieved with direct laser, particularly if the working distance increases during PRP, thus causing thermal damage to a greater area of retina. Indeed, the post PRP fundus photographs of both patients show large burns tending towards confluen 

We hypothesise that the large area involved in performing an indirect PRP, and the depth of the burn achieved with diode laser, damaged a large number of choroidal nerves causing the pupillary and corneal abnormalities. 

We propose the following measures to avoid choroidal nerve damage when performing indirect diode laser PRP. Grade 1 to 2 burns should be discretely placed so as to prevent conjunc 

Diabetics with and without retinopathy have significantly increased epithelial fragility when compared with normal controls. Diabetics also have reduced corneal sensitivity when compared with normal controls. Diabetics also have reduced corneal sensitivity when compared with normal controls. However, before laser treatment, neither of our two patients had ever had any symptoms or signs of corneal disease. All the corneal problems started post laser and were associated with a total lack of corneal sensation. As the corneal sensation recovered over the months the frequency of the epithelial erosions diminished. 

The optics of the diode laser beam mean that it is possible to clip the edges of the iris in the laser beam during treatment. It is possible that this could account for some of the pupillary abnormalities post PRP, but taking into account the corneal anaesthesia and reduced accommodation, it would seem more likely to be a result of damage to a common denominator. 

Correspondence to: Miss Buckley. Accepted for publication 18 June 1998
Congenital toxoplasma chorioretinitis transmitted by preconceptionally immune women

HÉLÈNE DOLLFUS, PASCAL DUREAU, CHRISTOPHE HENNEQUIN, YVES UTEZA, ALAIN BRON and JEAN LOUIS DUFIER

doi: 10.1136/bjo.82.12.1444

Updated information and services can be found at:
http://bjo.bmj.com/content/82/12/1444.1

These include:

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/