LETTERS TO THE EDITOR

Congenital toxoplasma chorioretinitis transmitted by preconceptionally immune women

Editor,—During pregnancy primary toxoplasmic infection of the mother is a well known cause of congenital chorioretinitis due to fetal contamination by Toxoplasma gondii. It is generally thought that women infected before conception have no risk of transmitting the disease to the fetus unless they are severely immunocompromised. We report two children with severe ocular lesions due to congenital toxoplasmosis transmitted by preconceptionally immune mothers.

CASE 1
A 1-year-old girl presented with a convergent squint as a consequence of bilateral large macular scars. She was the first child of a healthy immunocompetent mother. Three months before conception, the systematic French prenatal serological screening of the mother showed a recent toxoplasmic infection diagnosed by a high titre of specific immunoglobulin M (IgM) (IgM 5200, Biotrol Merck (normal <200), IgG= 40 IU/ml) (Table 1). She was treated with spiramycin 3 MIU per day for a month. At the time of referral, the mother's titre of IgM had significantly decreased (IgM 200) and showed a slightly higher rate of IgG (140 IU/ml). Her daughter's serological status showed a high titre of specific IgG (624 IU/ml), the presence of specific IgA (6/12 index ISAGA); immunosorbent agglutination assay, Biorad, index 0–12) and specific IgM (11/12 index ELISA) confirming a fetal infection. Intracerebral calcifications, suggestive of congenital toxoplasmosis, were found on the computed tomogram (Fig 1). The child was otherwise healthy and was not treated.

CASE 2
A 1-month-old boy was referred because of a congenital cataract in the right eye and a macular atrophic lesion surrounded by an active whitish ring. He was the third child of an immunocompetent woman, a native of Saint-Domingue (Haiti). She had long standing toxoplasmic immunity, confirmed by the absence of specific IgM and stable IgG rates at the fourth and the 10th weeks of her pregnancy (ELISA, IgG 49 and 54 IU/ml respectively) providing proof of an anterior toxoplasmic infection (Table 1). The serology of the neonate showed evidence of active T gondii infection with a high IgG titre (ELISA >1200 IU/ml), a positive specific IgM (10/12 index ISAGA) as well as a positive specific IgA (6/12 specific ISAGA). The serological study of the mother, after the birth, showed a dramatically increased level of IgG (ELISA IgG > 1200 IU/ml) with specific IgA (12/12 index ISAGA); however, no specific IgM was detected. The child was operated on for his cataract and was treated orally with pyrimethamine and sulfadiazine.

COMMENT
Congenital chorioretinitis may be a challenging clinical situation for which fetal infections must be considered, in particular, congenital toxoplasmosis. Because of the concept that the offspring of an immune woman is protected, the diagnosis of infection by T gondii may be overlooked in rare cases especially when there are only ocular manifestations. In our two cases, the mothers were considered to be immune to T gondii; nevertheless, they transmitted the disease to their children who presented with sight threatening manifestations and no systemic symptoms. The mothers were not immunocompromised, thus excluding toxoplasmosis reactivation due to immunodeficiency. Different pathophysiological mechanisms may be suggested and may be illustrated by our two cases.

Regarding our first patient, it has been reported recently that, exceptionally, congenital toxoplasmosis may be a consequence of primary maternal toxoplasmic infection preceding conception. Despite medical treatment, the para-sitaemia may remain active even months after the onset of the disease and could be responsible for fetal contamination. An emerging immune response as well as the mother's treatment, reducing the parasitaemia and without miscarriage. The development of toxoplasmic infection in the second case may be explained by reinfection of the mother. The mother's positive specific IgA suggested that there was reinfection of the mother by the parasite, as these immunoglobulins are produced during the digestive phase of the acute infection. Different virulence have been described, and reinfection by a particularly virulent strain could explain the inability of the mother's immune system to protect the fetus. The absence of IgM in the mother after the birth of the child is striking and the origin remains unclear although a similar serological status has already been described in a case of spontaneous abortion due to presumed reinfection of a preconceptionally immune mother.

The possibility of the rupture of endometrial toxoplasmic cysts, contaminating the fetus during pregnancy or at birth, can be raised according to Langer8 but this theory has been considered with reservation by other authors. Nevertheless, because of the IgA level in the mother of our second patient, we assume that there is reinfection and not reactivation.

Consecutive toxoplasmic infection in siblings may occur. Indeed, siblings with ocular toxoplasmosis have been reported14 and pose the question of congenital or acquired origin of these iterative intrafamilial toxoplasmic infections. In none of these papers has the congenital origin of the infection been proved calling into question congenital reinfection of these siblings.

Positive toxoplasmic screening before or at the beginning of the pregnancy may be wrongly reassuring and may lead to an underestimate the toxoplasmic origin of some congenital chorioretinitis. The presentation of these two children with severe ocular manifestations of congenital toxoplasmosis shows indeed that this diagnosis cannot be totally excluded even if the mother has been infected by the parasite before conception.

We thank Mr Carlos Pavesio (London), consultant ophthalmic surgeon, for interesting comments concerning our two cases and Mr Phillip Harris (Edinburgh) for his help.

HÉLÈNE DOLLFUS
PASCAL DUREAU
Service d’Ophtalmologie, Hôpital Necker-Enfants Malades, Université Paris V Paris, France

CHRISTOPHE HENNEQUIN
Service de Microbiologie, Hôpital Necker-Enfants Malades, Université Paris V Paris, France

ALAIN BRON
Service d’Ophtalmologie, Hôpital Général de Dijon, Dijon, France

JEAN LOUIS DUFIER
Service d’Ophtalmologie, Hôpital Necker-Enfants Malades, Université Paris V Paris, France

Table 1 Main serological findings in the two cases

<table>
<thead>
<tr>
<th></th>
<th>Child</th>
<th>Mother before conception</th>
<th>Mother after birth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IgM</td>
<td>IgG</td>
<td>IgA</td>
</tr>
<tr>
<td>Case 1</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Case 2</td>
<td>+</td>
<td>+</td>
<td>–</td>
</tr>
</tbody>
</table>
| Level of specific antibodies against Toxoplasma gondii (+ to ++): present, (−) not present, or (NA) not available.
CASE 1
A 30 year old man was admitted after being struck on the face with a shiny stick.

Visual acuity was perception of light only. A 10 mm horizontal upper lid laceration was noted with a 200 degree superior iridodialysis. The lens was luxated inferiorly with zonular dehiscence above. Intraocular pressure was 15 mm Hg with no orbital fracture.

After initial primary repair of the lid the patient was treated with topical steroids and antibiotics. The eye settled with visual acuity of counting fingers. One month after the original injury an acute rise in intraocular pressure to 54 mm Hg was lowered medically with no identifiable lens. At the time of surgery, corneal tissue examination under anaesthesia revealed a core of dense cork with an outer layer of leather and can reach speeds of up to 80 miles per hour.

The recent spate of shifty related injuries has reopened the debate as to whether the wearing of faceguards or helmets should be compulsory during formal matches and practice sessions. At present, such protection is optional, including physical education at school.

We feel that faceguards and helmets should be worn at all levels of the game and should be compulsory with particular emphasis on enforcement at school and junior levels. Until the traditionalists who feel that the game is in some way “protected” by protective headgear relent, this easily preventable sports injury will continue to cause serious ocular morbidity in the highlands of Scotland.

AT PURDIE
I F WHYTE
Department of Ophthalmology, Raigmore Hospital, Inverness IV2 3UJ

Correspondence to: Dr Purdie.
Accepted for publication 3 June 1998

Ultracebrastric alterations in the stroma adjacent to non-inflammatory corneal perforations associated with long standing rheumatoid arthritis

EDITOR,—Patients with rheumatoid arthritis commonly have two types of corneal ulceration. One is a peripheral corneal ulceration thought to be caused by complex mediated hypersensitivity. 1 The other is a paracentral corneal ulceration that tends to perforate the cornea rapidly. Its pathogenesis remains unknown, though a key feature is the lack of inflammation, leading to the suggestion that it is the result of surface disease (drying).

CASE REPORTS
We examined two individuals, a 38 year old woman and a 76 year old woman, with unilateral corneal epithelial defects and aqueous tear deficiencies. Both patients had been treated for rheumatoid arthritis for several years; however, neither had been on systemic corticosteroids. The 76 year old had had successful cataract surgery 1 week previously and was using 0.1% betamethasone eye drops. At the time of presentation both women had severe dry eye (possibly secondary Sjogren’s syndrome, though no biopsies were taken to confirm this) as assessed by detailed slit lamp examination with fluorescein and rose bengal staining, and by the Schirmer test. The 38 year old was started on 0.1% fluorometholone and 0.3% norfloxacin and dibekecin eye drops four times a day, and the 76 year old was switched to the topical application of 0.1% betamethasone and 0.3% ofloxacin ointments four times a day. A few weeks later paracentral corneal perforations developed suddenly, though without pain (Fig 1). Unlike peripheral corneal ulceration, little or no inflammation was seen on the ocular surface at any time.

Penetrating keratoplasties were performed and a treatment regimen was begun that included artificial tears (for dry eye) and 0.1% betamethasone topically four times a day in addition. The 76 year old received 2 mg betamethasone intravenously once a day and 1 g flomoxef sodium intravenously twice a day for the first 3 days after surgery; this was followed by betamethasone (1 mg) and antibiotic (300 mg cefzilidin; 100 mg, three times a day) taken internally for 1 week. At the time of writing, topical steroids (in both cases 0.1% betamethasone) continue to be used, and both patients are doing well 7 years (38 year old) and 5 years (76 year old) after surgery, with no sign of another perforation.

At the time of surgery, corneal tissue directly adjacent to the paracentral perforation, as well as tissue in the peripheral cornea, was obtained for histopathological study. In line with the lack of clinically detectable inflammation (Fig 1), light microscopic examination of both cases revealed only a few inflammatory cells surrounding the perforation and none in more peripheral areas (data not shown). In both patients’ corneas, electron microscopy documented many electron dense deposits in the extracellular stromal matrix (Fig 2). These amorphous deposits were intimately associated with collagen, and might represent degraded and/or aggregating collagen fibrils resulting from the melting process. Also detected were numerous atypical, thin fibrils (Fig 2; inset). These were fairly widely interspersed with normal diameter collagen though, on occasion, they appeared in groups. Interestingly, these abnormal electron microscopic features were observed not only in stroma right at the edge of the perforation, but in more peripheral regions of the cornea as well.

COMMENT
The general clinical presentations of both these individuals, especially the lack of inflammation, are similar to previous reports of perforated paracentral corneas. 2 Often, infiltrating macrophages and T cells that are associated with HLA class II antigens are located around corneal ulcers, and various

Figure 1 Paracentral corneal perforation (38 year old woman). There is little or no inflammation on the ocular surface. The anterior chamber is maintained by a therapeutic contact lens.
cytokines and proteinsases secreted from these cells are thought to trigger a corneal perforation. However, this pathogenesis is unlikely in our cases because little or no inflammatory cell infiltration was detected.

As in all connective tissues, collagen imparts to stroma by far the majority of its tensile strength. It follows that ultrastructural collagen alterations might cause our patients' corneas to become somewhat fragile, predisposing them to non-inflammatory corneal perforations. With this in mind, it is noteworthy that the alterations of the corneal extracellular matrix we report here closely resemble those seen in ruptured hand tendons of rheumatoid arthritis patients. It is possible, therefore, that a similar structural weakening of both these connective tissues occurs and is associated with collagen abnormalities in long standing rheumatoid arthritis.

WAKAKO ADACHI
KOHI NISHIDA
ANDREW J QUANTOCK
SHIGERU KINOSHITA
Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan

YASUO ISHII
Department of Ophthalmology, Shinkawabashi General Hospital, Tokyo, Japan

Correspondence to: Kohji Nishida, MD, PhD, Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji, Kyoto 602, Japan. Accepted for publication 29 July 1998

Table 1 Kinetics of anti-toxoplasmic IgG, IgM and IgA antibodies (months) from the first serological tests at the time of onset of cervical adenopathies (T0). T8 months corresponds to the first immunological study in parastological laboratory and T15 months to the onset of chorioretinitis. Note that the first serological tests (undertaken in another laboratory) were based only on immunoenzymatic methodology (IgG and IgM (MEIA)).

<table>
<thead>
<tr>
<th>Methods</th>
<th>IgG-Ab (MEIA)</th>
<th>IgG-Ab* (HSDA/ml)</th>
<th>IgM-Ab (MEIA)</th>
<th>IgA-Ab (ICT-M)†</th>
<th>IgA-Ab (ICT-A)†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cut off</td>
<td>3</td>
<td>10</td>
<td>0.5</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>T 0 (onset of cervical adenopathies)</td>
<td>71</td>
<td>ND</td>
<td>9.9</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>T 0.5</td>
<td>855</td>
<td>ND</td>
<td>8.3</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>T 2</td>
<td>4030</td>
<td>ND</td>
<td>3.6</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>T 4</td>
<td>4200</td>
<td>ND</td>
<td>1.5</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>T 8 (pregnancy contraindicated)</td>
<td>1820</td>
<td>6400</td>
<td>1.4</td>
<td>11</td>
<td>10.5</td>
</tr>
<tr>
<td>T 12</td>
<td>880</td>
<td>6400</td>
<td>1.0</td>
<td>10</td>
<td>10.5</td>
</tr>
<tr>
<td>T 15 (onset of chorioretinitis)</td>
<td>680</td>
<td>6400</td>
<td>1.1</td>
<td>11</td>
<td>10</td>
</tr>
</tbody>
</table>

*Detection of IgG antibodies by high sensitivity direct agglutination (HSDA).
†Detection of IgM and IgA antibodies by immunocapture test with revelation by a tachyzoite suspension (ICT-M, ICT-A).

COMMENT
This case is unusual in that a chorioretinal toxoplasmic lesion occurred 15 months after seroconversion in a healthy adult.

The precise date of infection was deduced from clinical arguments and the results of biological tests. The first battery of serological tests, at the onset of cervical adenopathies (T0), was carried out because the patient was intending to have children. Eight months later the persistence of specific IgA antibodies pointed to active toxoplasmosis. As we had previously observed cases of congenital transmission after preconceptional seroconversion with adenopathies, the patient was advised not to become pregnant yet. This position was borne out by the onset of chorioretinitis some months later. The ocular involvement was confirmed by sampling the anterior chamber (positive Witmer–Desmonts coefficient, and focal synthesis of specific IgA) less than 8 days after the onset of visual disorders.

Ocular lesions were long considered to be a sometimes very late complication of congenital toxoplasmosis, except in cases of immunodepressive (human immunodeficiency virus, organ transplantation, etc.). Our patient's immune status was strictly normal; she was...
Table 2 Results of the different tests performed on serum and aqueous humour

<table>
<thead>
<tr>
<th></th>
<th>Blood/ serum</th>
<th>Aqueous humour</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herpesvirus, CMV, EBV, Lyme, Larva migrans</td>
<td>Negative</td>
<td>ND</td>
<td>No viral or other parasitic infection</td>
</tr>
<tr>
<td>HIV</td>
<td>Negative</td>
<td>ND</td>
<td>HIV seronegative</td>
</tr>
<tr>
<td>Immunological examination and lymphocyte subpopulations</td>
<td>Normal</td>
<td>ND</td>
<td>No immune deficiency</td>
</tr>
<tr>
<td>T. gondii DNA</td>
<td>Negative</td>
<td>Positive with one probe</td>
<td>Doubtful result on aqueous humour</td>
</tr>
<tr>
<td>Total IgA g/l</td>
<td>12.8</td>
<td>0.056</td>
<td>Wintner–Desmonts coefficient: 4.6 (suggesting local IgG-Ab synthesis)</td>
</tr>
<tr>
<td>Anti-toxoplasmal IgG (U/HSDA/ml)</td>
<td>6400</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>Specific IgM (ICT-M)</td>
<td>11/12</td>
<td>0/4</td>
<td>Presence of serum IgM-Ab; no intracellular IgM-Ab synthesis</td>
</tr>
<tr>
<td>Specific IgA (IC-EA)</td>
<td>10/12</td>
<td>4/4</td>
<td>Presence of serum IgA-Ab; intracellular IgA-Ab synthesis</td>
</tr>
<tr>
<td>Detection of circulating parasite by mouse and cell culture inoculation</td>
<td>Negative</td>
<td>ND</td>
<td>No circulating toxoplasma</td>
</tr>
</tbody>
</table>

ND = not done.

not on immunosuppressive drugs and had no intercurrent infections. The persistence of two small central adenopathies and specific IgA antibodies 15 months after the primary infection illustrates the long duration of the active phase of infection in this case complicated by secondary chorioretinitis. With a well defined interval before onset, this case of chorioretinal involvement (isolated, unilateral, and without pre-existing lesions) differs from other reported cases in which the date of seroconversion was less precise and the chorioretinitis was often associated with neurological manifestations. This case of secondary toxoplasmic chorioretinitis in an immunocompetent woman suggests that all patients with persistent adenopathies and serological markers of active T. gondii infection should have regular ocular monitoring.

Financial support was provided by the Programme Hospitalier de Recherche Clinique (1994), Direction des Hôpitaux, Ministère des Affaires Sociales, de la Santé et de la Ville, Paris, France.

C MARX-CHEMLA A VILLENA
F FOUDRINIER
J M PINON
Reims Toxoplasmose Group, Laboratoire Parasitologie, Hôpital Maison Blanche (UPR ESED 2070, IPR 53), CHU, Reims Cedex France

A GOTZMANIS F HAMON A DUCASSE
Reims Toxoplasmose Group, Services Ophtalmologie, Hôpital Robert Debré, CHU, Reims Cedex France

Correspondence to: C Marx-Chemla, Laboratoire de Parasitologie, Hôpital Maison Blanche, 45 rue Cognacq-Jay, 51002 Reims Cedex France. Accepted for publication 18 June 1998

Anterior segment complications of indirect diode laser in diabetic patients

EDITOR—We describe two cases of recurrent corneal epithelial breakdown following indirect diode laser panretinal photocoagulation (PRP) in diabetic patients. The particular nature of diode laser burns may have contributed to this event.

CASE 1
A 21 year old insulin dependent diabetic woman underwent bilateral indirect diode laser PRP under general anaesthesia for proliferative diabetic retinopathy (PDR). She presented 4 weeks later with a 3 week history of a painful left eye. Visual acuity was 6/12 and a 3 mm × 2 mm infiltrative corneal ulcer was noted. There was total corneal anaesthesia bilaterally and both pupils were mid dilated and non-reactive to light and accommodation. Microbiology was negative and the ulcer gradually healed with intensive topical antibiotic treatment. Over the next 3 months corneal anaesthesia persisted in the left eye, but resolved in the right. She had two further episodes of corneal epithelial breakdown on the left which were successfully managed with topical lubricants. One year after laser treatment visual acuity was 6/6 in the right eye and 6/12 in the left, with residual stromal scarring on the left (Fig 1). Both pupils remained mid dilated and non-reactive.

CASE 2
A 26 year old insulin dependent diabetic woman underwent indirect diode PRP to the left eye under general anaesthesia for PDR. One week later she presented with a dilated and non-reactive left pupil, complained of not being able to focus, and had an anaesthetic cornea. Subsequently she underwent two further treatment sessions to both eyes for persistent PDR. She then developed a large epithelial defect of the left cornea, total corneal anaesthesia bilaterally, and semi-patulous pupils non-reactive to light and accommodation. The epithelial defect was managed with topical antibiotics and lubricants with slow resolution. She went on to have three further episodes of epithelial breakdown on the left and two on the right. Topical lubrication and padding proved to be the most effective treatment. Eighteen months after initial laser treatment, corneal sensation had recovered, visual acuity was 6/18 in both eyes, and there was mild central stromal scarring bilaterally.

COMMENT
Corneal sensation and innervation of the pupil and accommodation is supplied by the long and short posterior ciliary nerves which pierce the eye posteriorly and run forward in the suprachoroidal space. Disruption of this anatomical pathway could therefore lead to the problems experienced by the patients described above. Indeed, pupillary abnormalities and a temporary reduction in corneal sensitivity have been noted following argon, xenon, and krypton laser PRP. However, to our knowledge, such profound corneal abnormalities with ulceration and scarring have not been described previously.

The histopathological damage inflicted by laser burns has been studied in both the animal and human eye. Clinically burns can be classified as follows: grade 1 consists of a greyish retinal discoloration only; grade 2 shows whitish discolouration surrounded by a greyish periphery, and grade 3 burns have a distinct white centre, representing the highest intensity burn. High intensity laser burns have been shown to damage choroidal nerves in humans and animals. The thermal damage profile of a retinal burn caused by the diode laser (wavelength 810 nm) extends deeper into the choroid than that from an argon blue green laser.
laser (488–514.5 nm). This is due to the lower absorption within melanin of the longer diode laser wavelength. Hence there is potentially a greater risk of choroidal nerve damage from the diode laser, particularly with an excessively intense burn. The burn size associated with indirect laser tends to be larger than that achieved with direct laser, particularly if the working distance increases during PRP, thus causing thermal damage to a greater area of retina. Indeed, the post PRP fundus photographs of both patients show large burns tending towards confluence (Fig 2).

Diabetics with and without retinopathy have significantly increased epithelial fragility when compared with normal controls. Diabetics also have reduced corneal sensitivity when compared with normal controls. However, before laser treatment, neither of our two patients had ever had any symptoms or signs of corneal disease. All the corneal problems started post laser and were associated with a total lack of corneal sensation. As the corneal sensation recovered over the months the frequency of the epithelial erosions diminished.

The optics of the diode laser beam mean that it is possible to clip the edges of the iris in the laser beam during treatment. It is possible that this could account for some of the pupillary abnormalities post PRP, but taking into account the corneal anaesthesia and reduced accommodation, it would seem more likely to be a result of damage to a common denominator.

We hypothesise that the large area involved in performing an indirect PRP, and the depth of the burn achieved with diode laser, damaged a large number of choroidal nerves causing the pupillary and corneal abnormalities.

We propose the following measures to avoid choroidal nerve damage when performing indirect diode laser PRP. Grade 1 to 2 burns should be discretely placed so as to prevent confluence certainly avoiding high intensity grade 3 burns. Under peribulbar and general anaesthesia, it is particularly important to use less intense burns as the painful feedback from choroidal nerve damage is absent. Care should be taken with the working distance of the laser indirect to avoid unduly large burns. Particular caution should be exercised when treating in the horizontal retinal meridia, the typical location of the long ciliary nerves. Finally, the patient should be warned of possible effects on the anterior segment which may occur after indirect diode laser PRP.

S A BUCKLEY
D N PARMAR
H JACKSON
J D A MCHUGH
P A HUNTER
King's College Hospital, London

Correspondence to: Miss Buckley.
Accepted for publication 18 June 1998

Congenital toxoplasma chorioretinitis transmitted by preconceptionally immune women

HÉLÈNE DOLLFUS, PASCAL DUREAU, CHRISTOPHE HENNEQUIN, YVES UTEZA, ALAIN BRON and JEAN LOUIS DUFIER

doi: 10.1136/bjo.82.12.1444

Updated information and services can be found at:
http://bjo.bmj.com/content/82/12/1444.1

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/