LETTERS TO THE EDITOR

Cystoid macular oedema in patients with AIDS and cytomegalovirus retinitis on highly active antiretroviral therapy

EDITOR.—Between 16% and 40% of patients with AIDS develop cytomegalovirus retinitis (CMVR). This typically presents when the CD4+ count drops below 75 cells/µl. Visual loss is usually due to retinal detachment, macular or optic nerve infection, or vascular occlusion. Typically a minimal inflammatory response is mounted. Patients with CMVR not associated with HIV infection may develop a vitritis with cystoid macular oedema (CMO) during immune restoration. With the advent of highly active antiretroviral therapy (HAART) patients with AIDS are enjoying improvement in their immune status, with falling HIV viral loads and rising CD4+ counts. Such patients may mount a significant inflammatory response against CMVR, causing a regression of the CMV infection but a paradoxical visual loss due to the inflammation. We describe two such patients with CMVR and vitritis, who lost vision as a result of CMO.

CASE REPORTS

Patient 1 was diagnosed with zone 2 CMVR affecting the left eye in May 1996. He was induced on intravenous ganciclovir 5 mg/kg twice daily for 2 weeks and maintained on intravenous ganciclovir 5 mg/kg once daily for 5 months until progression of CMVR occurred. He was then induced on intravenous cidofovir 5 mg/kg/week followed by intravenous cidofovir 5 mg/kg twice a month maintenance. At the same time he was started on HAART therapy consisting of D4T, 3TC, and indinivir. There was a rapid resolution of active CMVR with a rise in CD4+ count and a fall in the HIV viral load (Fig 1). However, 2 months later his vision dropped to from 6/12 to 6/24 and vitritis, optic nerve swelling, and CMO were noted (Figs 2 and 3). Vision in the right eye was maintained with no sign of CMVR.

Patient 2 was diagnosed with zone 2 CMVR affecting the right eye in October 1996 (Fig 4). He was induced on intravenous ganciclovir 5 mg/kg twice daily for 2 weeks followed by maintenance on ganciclovir by mouth 3 g/day for 4 months until progression of the CMVR occurred into zone 1 in the right eye and zone 3 in the left eye. He was treated with bilateral ganciclovir implants with no systemic cover. Treatment of HIV with AZT and 3TC was continued. Immune recovery followed the successful treatment of pulmonary tuberculosis. In May 1997 his CD4+ count had risen to 250/µl with a low HIV viral load. Vision in the right eye fell from 6/9 to 6/24 due to macular oedema and mild vitritis. Treatment with topical prednisolone four times daily and with acetazolamide 250 mg twice daily, produced a sustained two line improvement in visual acuity (Figs 5 and 6). Vision in the left eye was maintained at 6/5 with stable zone 3 disease and no CMO.

COMMENT

The picture of CMV retinitis is changing with the advent of effective retroviral therapy. CMVR has recently been diagnosed in patients with relatively high CD4+ counts (197–270/µl) following the initiation of HAART. A syndrome of macular serous exudation has recently been described, and there are reports of iris in patients on intravitreal cidofovir. However, only a few cases with CMO have been described.

Both patients in this study developed macular oedema. In patient 2 use of a ganciclovir implant may have contributed to macular leakage. However, in both patients only the eye with extensive disease developed CMO. Further analysis of the rate of immune recovery, viral load levels, and other immune markers may help to predict which eyes may become affected by CMO.

The question of treatment causes a dilemma. The systemic use of immunosuppressive agents may be contraindicated; however, the use of topical or sub-Tenon’s steroid may have some benefit. One of our patients benefited from acetazolamide 250 mg twice daily, although the side effects when combined with antiviral drugs made this treatment unsustainable. Others have used NSAIDS topically and systemically with some effect.

Cystoid macular oedema in HIV+ patients with CMVR retinitis may represent a healing phase of the disease, which sadly still causes visual loss and presents physicians and immunologists with new clinical challenges.

RICHARD NEWSOM
TONY CASSWELL
Dept of HIV/GUM Medicine, Royal Sussex County Hospital, Brighton

EMMON O’MOORE
MARTIN FISHER
Dept of HIV/GUM Medicine, Royal Sussex County Hospital, Brighton

Correspondence to: Mr Newsom. Accepted for publication 5 November 1997

Figure 1 Progression of CMVR in the left eye of patient 1 (right eye unaffected). HAART therapy was started at month 6 and macular oedema with reduced vision was noted by month 8. CMVR activity was suppressed from month 6. CMO = cystoid macular oedema, VA = visual acuity. Shaded area indicates: CMVR activity, CMVR treatment, or the presence of CMO.

Figure 2 Fundus photograph of patient 1 showing vitritis and a swollen disc.

Figure 3 Fundus fluorescein angiogram of patient 1 demonstrating macular oedema with optic disc leakage.

Figure 4 Progression of CMVR in patient 2. HAART therapy was started at month 2, following successful lung tuberculosis treatment, and macular oedema with reduced vision was noted by month 7. CMO = cystoid macular oedema, VA = visual acuity. Shaded area indicates: CMVR activity, CMVR treatment, or the presence of CMO.

Figure 5 Fundus photograph of patient 2 showing macular oedema.

Figure 6 Late stage fundus fluorescein angiogram of patient 2 showing macular leakage.

(Received 26 April 1997; accepted 5 November 1997)
Aicardi syndrome

EDITOR,—Aicardi syndrome is a congenital disorder characterised by severe epilepsy, agenesis of the corpus callosum, typical chorioretinal lacunae, and learning disabilities. Normally it carries a poor prognosis. We present a case in which these symptoms have been found in a 49 year old woman, suggesting a “forme fruste” of the disorder.

CASE REPORT

A 49 year old woman previously thought to have cerebral and retinal toxoplasmosis was referred because of visual deterioration, poor balance, and obvious visual field restriction. On examination her corrected visual acuity was right 0.2 (6/9.5) and left 0.8 (6/38) (Snellen). The fundi of both eyes showed large chorioretinal defects adjacent to the discs and smaller rounded pale yellow “punched out” chorioretinal lacunae scattered around the posterior pole, as is typical in Aicardi syndrome. Her discs were hypoplastic with marginal pigmentation nasally. She also had three pigmented lesions surrounding the left fovea typical of healed disciform scarring (Fig 1).

A computed tomographic scan was performed which showed dysgenesis of the corpus callosum. There was no intracranial calcification as seen in cerebral toxoplasmosis (Fig 2).

The youngest of five children of a 39 year old mother, she was seen in the school clinic aged 4 when she was noted to have choroidal lesions. A plain skull x-ray was suggestive of hydrocephalus. She was mildly intellectually impaired with seizures manifesting as left sided clonic movements, followed by loss of awareness. At 9 years old she could print her name and recognise letters but was unable to read. Her seizures are helped by a combination of phenobarbital and primidone. At 14 her seizures, learning disability, and eye changes were thought to be due to cerebral and ocular toxoplasmosis. The dye test was weakly positive at 1:8. At the age of 20 her corrected visual acuities were 6/9 right and 6/12 left Snellen, with an alternating left divergent squint and a slight left ptosis. She had moderate myopic astigmatism which was more marked in the right eye. Drawings of the fundus at this time show chorioretinal lacunae adjacent to the disc, but not extending over the macular area.

She was examined at the age of 44 when she had developed disciform changes at the left macula following a drop in VA 2 years earlier. She is living in the community and is virtually seizure free on carbamazepine 800 mg twice daily. G banding studies show an apparently normal 46XX karyotype. Radiology reveals no evidence of costovertebral abnormality.

Pauclity of signs in X linked ocular albinism with a 700 kb deletion spanning the OAI gene

EDITOR,—X linked ocular albinism (XLOA) shows great variability in clinical expression between affected males as well as in heterozygote females, even within one sibling. Before 1995, the gene implicated in XLOA (OAI) was cloned. So far, we have found mutations in the OAI gene in only 15% of the X linked ocular albinism patients (unpublished). Also Schiaffino et al1 revealed mutations in only one third of XLOA patients. Here, we report...
The clinical features of a person with XLOA in which the entire OA1 gene was missing due to a submicroscopic interstitial deletion in the distal short arm of the X chromosome. The detailed molecular findings were published elsewhere.1 As Winship et al suggested that XLOA and late onset (fourth and fifth decades) sensorineural deafness are allelic variants, or that both entities may be due to contiguous gene defects, we examined our patient for hearing loss. CASE REPORT A man, born in 1956, was seen at our department for genetic counselling because of XLOA. Genealogical examination could not reveal consanguinity or a link with other families with XLOA. He had dark blond hair, moles and freckles, and tanned with difficulty. Visual acuity on the right eye was 20/80 with S +3.5 C −4.25 10°, and on the left eye 20/80 with S +3.75 C −4.75 0°. On ophthalmic examination we found congenital pendular horizontal nystagmus, iris transillumination absent, macular reflexes, and an albinotic fundus periphery. Visual evoked potentials showed abnormal neuronal crossing at the optic chiasma, as in albinism. Macromelanosomes were visible by electron microscopy in a skin biopsy taken from the forearm. A neurologic test set revealed no anosmia or hypoaesthesia, nor could we find kidney abnormalities or hormonal disturbances as in Kallmann syndrome. Audiograms in 1996 showed normal results. In addition, our case was examined because he complained of fertility problems. In this examination only a reduced number of spermatozoa were found (22.5 × 10^6). Molecular genetic investigation revealed a deletion of 700 kb in the Xp22.2 region of the X chromosome. All nine exons of the OA1 gene were tested in the DNA of our case and were found to be deleted.1

COMMENT The ophthalmic features of this case are comparable with those of the affected males described by Charles et al1 and van Dorp.2 The albinism in patients described by these authors may probably be caused by a variety of distinct mutations in the OA1 gene. Clinical variability between families may be due to different OA1 mutations in male patients, but can also be accounted for by other genetic factors, such as preferential X inactivation in female carriers. Variation in clinical expression within one sibship is probably not caused by different mutations but by environmental factors or modifying genes. Since the molecular defect in our case spans the entire OA1 gene we expected relatively severe clinical or functional abnormalities. However, only relatively “mild” XLOA symptoms were found. The audiograms in our patient showed normal patterns indicating that a separate gene for sensorineural deafness may exist in the genomic vicinity of the OA1 gene but outside the DNA deletion in our case. The fact that we found mutations in only 15% of the XLOA patients may indicate that either the OA1 gene has not been cloned in its entirety, or that a separate, closely linked and as yet not discovered albinism gene exists in the distal part of the X chromosome. In conclusion, our case, with this 700 kb deletion, showed the mild and classic form of XLOA, in addition to infertility. It is as yet uncertain if this infertility was due to a genetic factor. The authors wish to thank Patricia Apkarian, Mary van Schooneveld, and Gun F J M Vriesen for their contributions.

NEL T TIJMES ARTHUR A BERGEN Netherlands Ophthalmic Research Institute, Department of Ophthalmogenetics, Amsterdam Zuidoost, Netherlands

PAULUS T Y M DE JONG Netherlands Ophthalmic Research Institute, Department of Ophthalmogenetics, Amsterdam Zuidoost, Department of Ophthalmology, AMC, Amsterdam Zuidoost; and Erasmus University Rotterdam, Department of Epidemiology and Biometrics, Rotterdam, Netherlands.

Correspondence to: N T Tijmes, Netherlands Ophthalmic Research Institute, Department of Ophthalmogenetics, PO Box 12141, 1100 AC Amsterdam, Netherlands. Accepted for publication 6 November 1997

Intracranial plasmacytoma masquerading as Gradenigo’s syndrome

EDITORS—Maini and MacEwen recently published a report in the BJO of intraorbital optic nerve compression secondary to an intracranial plasmacytoma. Although rare, extradural plasmacytomas usually present in the head and neck region,1 and with improved methods of intracranial imaging, it is likely that more of these tumours will be detected at an early stage by the ophthalmologist. Here, we report a similar case of intracranial plasmacytoma but presenting as a rare disorder of ocular motility normally associated with middle ear infection.

CASE REPORT A 45 year old man presented to his general practitioner with a sudden onset of horizontal diplopia after blowing his nose vigorously. He was noted to have a mild pyrexia, left frontal sinus pain, and left sided otalgia but was otherwise well. Two years earlier the patient had been diagnosed as having myeloma following a review was organised in conjunction with the haematology department, but the following week he re-presented with left sided trigeminal neuralgia, left sided deafness, and dysarthria. Neurological examination suggested involvement of the left V, VI, VIII, X, and XII cranial nerves. A computed tomogram (Fig 1) showed a lytic lesion at the apex of the petrous temporal bone, and subsequent magnetic resonance imaging confirmed the presence of an intracranial lesion extending caudally from the left middle cranial fossa to involve the affected cranial nerves (Fig 2). The lesion was diagnosed as an extradural plasmacytoma and the patient underwent posterior fossa radiotherapy. He fortunately made a rapid improvement, but still had a slight residual diplopia which was alleviated by a prismatic correction. There was no evidence of relapse of his myeloma.

COMMENT In 1904 Gradenigo described a syndrome of sixth nerve palsy with pain in the distribution of the upper divisions of the trigeminal nerve caused by otitis media and mastoiditis in the region of the apex of the petrous temporal bone. Intraorbital optic nerves are usually involved and cause pain without diplopia. Common causes of pain in the region of the apex of the petrous temporal bone are otitis media and mastoiditis. However, involvement of the internal auditory canal is more rare and is usually caused by malignancy.

A computed tomogram (Fig 1) showed destruction of the air cells within the left petrous temporal bone (A). The lytic lesion has eroded through the wall of the petrous temporal bone (arrows) and into the posterior cranial fossa (B).
bone. In recent times, however, other causes have been recognised—for instance, meningioma, fractures, and T cell lymphoma. To our knowledge, this is the first report of Gradengio’s syndrome caused by an extramedullary plasmacytoma, and almost certainly the first to be confirmed with magnetic resonance imaging.

The possible pathogenesis of this particular case is interesting, since the diplopia occurred several weeks after a rigorous nose blowing. In Gradengio’s original paper, the cranial nerve involvement was thought to occur as a result of gradual spread of middle ear infection upwards to cause inflammation of the meninges inflating or lifting the apex of the petrous temporal bone. It is important to underline the difference between that condition and the much rarer isolated intracranial extramedullary plasmacytoma described in this report. In the latter, systemic indicators of myeloma are absent, and the prognosis following radiotherapy is far better.

The authors would like to thank Dr C Barton, consultant haematologist, Dr N Dethubre and Professor D Allison, consultant radiologists, for their help with this case report.

R R A BOURNE
R E MACLAREN
Division of Ophthalmology, Royal Berkshire Hospital, Reading RG1 5DN

Correspondence to: Dr R R A Bourne.
Accepted for publication 5 November 1997

Use of ultrasound biomicroscopy in the localisation and management of an anteriorly situated intraocular foreign body

Editor—The precise imaging of anteriorly located intraocular foreign bodies (IOFBs) is difficult with present techniques—namely, computed tomography (CT) scanning, and A and B scan ultrasonography. In this case, ultrasound biomicroscopy (UBM) proved itself to be an excellent imaging technique for these IOFBs and therefore useful in clinical practice.

CASE REPORT
A 79 year old man presented to the eye casualty department complaining of a painful, red left eye with reduced vision. Two weeks previously he had been hit in that eye by the end of a nail which he had been pulling out of a table. He believed he had removed the piece of metal from his eye at the time. On examination, visual acuity (VA) was 6/9 in the right eye and 6/60 in the left eye. There was a nasal subconjunctival haemorrhage, though the entry wound was found at 5 o’clock, extending radi- ally from the cornea to the scleral border of the limbus and was siedle negative. There was an anterior uveitis with cells ++ and flare ++, and 360 degree posterior syncheiae. There was brisk vitreous activity, cells ++, and poor fundal view. Intraocular pressure was 12 bilaterally. Gonioscopy revealed iris tissue up to the wound but no foreign body in the anterior chamber. Plain skull x ray (Fig 1A) showed an intraocular radio-opaque foreign body. The patient was admitted for intense dilatation and steroid treatment before surgery. Superotem- poral posterior syncheiae were broken and some fundal view was obtained—BIO 3, though the IOFB was not seen. Conventional A and B scan ultrasound failed to localise accurately the foreign body, although it was identified on extreme peripheral sections (Fig 1B). CT scan showed a densely radio-opaque IOFB but accurate localisation was not possi- ble.

The wound had been present for 2 weeks, was self sealing, and it was considered safe to perform UBM using a standard eye cup, which had been disinfected using Milton. This iden- tified a foreign body (Fig 1C,D) adjacent to pars plana, 4 mm posterior to the angle recess (that is, 5 mm posterior to limbus) at the 5 o’clock meridian. When surgery was per- formed, a scleral trap door was constructed and a giant magnet was then placed with its point 5 mm from the limbus at the 5 o’clock meridian. The metallic foreign body was removed with ease. The scleral flap was then sutured. Cryotherapy was then applied to the entry site and the peripheral retina was inspected for any evidence of tears. In addition, perioperative systemic and topical steroids were administered to control intra-ocular inflammation and prevent proliferative vitreoretinopathy. Unfortunately, 6 weeks later he developed a total retinal detachment with inferior PVR, despite peri- operative control of intraocular inflammation with systemic steroids, and further surgery was required.

COMMENT
The accurate localisation of IOFBs is essential for the optimum management of patients. This enables the surgeon to plan the mostatraumatic method of removing the IOFB during surgery. Anteriorly located foreign bodies are particularly problematic as it may be impossible to visualise them directly although indention can aid direct visualisation of those located at the retinal periphery. At present, imaging of these IOFBs is possible with conventional A and B scan ultrasonogra- phy, plain x ray and CT scanning. CT scanning has its limitations owing to image obscuration from eye movement and the quality of images reconstructed by computers, although newer methods have been developed in an attempt to overcome these factors. A and B scan ultrasonography, although sensitive in detection and localisation of posterior segment IOFBs, does not provide good resolution of the extreme retinal periphery, ciliary body, posterior chamber, and drainage angle whereas UBM has good resolution of these areas. UBM can prove a useful tool to pinpoint the location of anteriorly located IOFBs as has been shown in experimental

Figure 1 (A) Lateral skull x ray showing appearance of foreign body. (B) Extreme peripheral B scan ultrasonography at 5 o’clock meridian showing foreign body (arrow) with shadowing posterior to it. (C) Ultrasound biomicroscopy at 5 o’clock meridian, sagittal view. Line measures distance from angle recess to foreign body, 4 mm. (D) Transverse view, ultrasound biomicroscopy showing foreign body adjacent to pars plana.
The wound capsule remnants were thought to be inad-
averely breaking o
itself. Thereafter, the patient did well with no complica-
tions from the vitreous cavity. The capsular rem-
nants were found to be adequate for sulcus fixa-
tion of IOL without sutureting. Postopera-
tively the patient did well with no complica-
tions. The CT films were reviewed again retro-
spectively by the radiologist and no radio-
opaque FB was suspected. This eye achieved a
visual acuity of 6/9 at the latest follow up, which
was 6 months after the incident.

Case report
A 72 year old Chinese woman underwent
right phaco cataract extraction in December
1996. In the middle of the phaco process, the
phaco chopper accidentally came into contact
with the tip of the phaco hand piece briefly. No
obvious breakage was seen on the phaco and
chopper process was continued. How-
ever, when the nucleus removal was
completed and the chopper was removed from the
eye, it was noted that the chopper had two
loose points with two tiny pieces of the instru-
ment easily breaking off from the main body.
When these two loose pieces were put back to
the breaking points, the instrument appeared to
be intact. Missing fragments, however, could not
be entirely excluded. A thorough search for any residual fragments in
the anterior chamber under the operating microscope
did not reveal anything. The residual cortex
was then removed with the standard auto-
phacoemulsification (phaco) chopper in
our case is much larger. Small metallic
fragments may break off from such instru-
ments. The possibility of the presence of metallic
fragments from these instruments left in the
eye should not be overlooked. Braunstein et al.
reported six cases of intraocular metallic
FBs after cataract extraction by the two
headed phaco technique. Similar find-
ings have also been produced in vitro by applying
ultrasound power from phaco handpiece to
"Figure 2 B-scan showing the intravitreal foreign body."
Absence of relative afferent pupillary defect and pupillary hemiakinesia in a child with homonymous hemianopia due to ((retro-))geniculate porencephaly

EDITOR,—Relative afferent pupillary defect (RAPD) is important in diagnosing lesions of the anterior visual pathways. RAPD is almost always present in unilateral optic nerve disease. Optic tract lesions are characterised by a combination of homonymous hemianopia and RAPD contralateral to the side of the lesion with subsequent, specific, asymmetric optic atrophy.1 In acute homonymous hemianopias RAPD has been used to differentiate between infrageniculate and suprageniculate lesions, since neither optic atrophy nor RAPD should occur in the presence of acquired affections of optic radiation or visual cortex.

Pupillary hemiakinesia—that is, reduced or absent pupillary light reaction after stimulus presentation in the blind field, is typical of optic tract lesions. However, we examined a young boy with unilateral involvement of postchiasmal visual pathways, homonymous hemianopia, and asymmetric optic atrophy due to a porencephalic substance defect, but without RAPD or pupillary hemiakinesia.

CASE REPORT

The 7 year old boy has been in ophthalmological care since shortly after birth because of horizontal nystagmus, strabismus, head posture (left head rotation), bilateral optic atrophy, and defective exploration of his right hemifield. Paediatric examination revealed a pathological left sided Babinski reflex. Cranial sonography and computed tomography showed a large porencephalic cyst involving the supratentorial parts of the right lateral ventricle. The presumed cause was intraternal haemorrhage or occlusion of the right posterior cerebral artery.

The boy underwent bilateral squint surgery at 4 years because of esotropia. His present ophthalmic findings are: visual acuity—right eye 0.7 (14/20), left eye 0.32 (6/20); postural head rotation towards the tested eye; the eyes are almost parallel; there is a marked latent nystagmus; ocular motility is unimpaired; pursuit is slightly jerky; optokinetic nystagmus (OKN) is not clearly triggered by targets moving to the patient’s right but is normal in the contralateral direction. Goldmann perimeter shows left homonymous hemianopia and a distinct constriction of the right hemifield on 26 September 1996 (Fig 1). The pupils are equal in size, react sluggishly to light, and show no RAPD. This can be confirmed by infrared pupillography showing bilaterally reduced amplitudes and prolonged latencies. Hemifield stimulation finds no difference between the nasal and temporal fields (Fig 2). The anterior segments are normal. Funduscopy shows a pronounced, bilateral optic atrophy which is somewhat band-shaped in the left disc.

Magnetic resonance imaging confirmed a huge, supratentorial porencephalic substance defect of the right cerebral hemisphere reaching the lateral geniculate nucleus (LGN) of that side (Fig 3).

COMMENT

Partial, asymmetric, bilateral optic atrophy with a faint horizontal band-shaped configuration in the left optic disc and left homonymous hemianopia indicate a lesion of the right optic tract, probably caused directly or indirectly by trans-synaptic (transgeniculate) degeneration due to an infrageniculate or perigeniculate lesion.1 OKN asymmetry suggests that the lesion includes the right occipito-parieto-temporal region. Neuroimaging confirms that the right LGN is involved in the porencephalic process.

However, the pupillary findings in this case are puzzling. Although RAPD contralateral to the lesion is to be expected, neither a careful swinging flashlight test nor pupillography show any side differences. A slight RAPD as found in amblyopia might compensate for an RAPD caused by a tract lesion. However, if amblyopia were present in this boy it should be found on the left side, thus not balancing but even amplifying the RAPD.

Wilhelm et al found that RAPD occurred in approximately half of all patients with lesions closer than 10 mm to the LGN or involving it. In lesions further away than 18 mm from the LGN it did not occur at all. Thus, optic tract lesions can exist without RAPD if the connections between anterior visual pathways and midbrain remain unaffected. These axons do not seem to be just branches of the retinogeniculate pathways. This may explain the absence of RAPD in spite of clear signs of a (transgeniculate) optic tract lesion which has also been described by Tychsen et al.

Table 1

<table>
<thead>
<tr>
<th>Field</th>
<th>Nasal</th>
<th>Temporal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latency (ms)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right eye</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left eye</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1
Visual fields (Goldmann perimeter). Note the marked constriction of isopters in the right hemifield.

Figure 2
Infrared pupillographic recording with hemifield stimulation results, latency times (upper), and constriction amplitudes (lower). Each value represents the mean of 20 measurements. Stimulus conditions: size 15° half circle, 2° offset to the vertical meridian; duration 200 ms; stimulus luminance 4.6 cd/m²; background luminance 1.6 cd/m². The visual field defect cannot be demonstrated pupillographically, and no significant difference between right and left eye is present. The latency times are unusually high and the constriction amplitudes very small.

Figure 3
Magnetic resonance image: porencephalic defect of the right hemisphere involving optic radiation and reaching the lateral geniculate nucleus.
Even more puzzling, however, is that hemifield stimulation 1 demonstrates no pupillary hemiakinesia, which should be present in cases with optic tract atrophy. 2 It is unlikely that the pupillary behaviour is caused by a stray light artefact 3 because the stimuli were very dim. Compared with pupillary responses in the same age group, those of the patient appear very small and the latencies unusually long. This may be interpreted as a general loss of pupillomotor input to both sides of the midbrain caused by this widespread cerebral lesion. This would support the view of Clarke and Gamlin derived from primate experiments, 4 interpreting the pretectal area as an integrator of allafferent pupillomotor input rather than a simple relay station.

The authors thank Dr C J Klott and colleagues (Stuttgart, Germany) for the MRI scans and Priv-Doz Dr D Petersen (Neuroradiological Department, University of Tübingen) for his support in interpreting them. The authors are indebted to Miss B Selig for preparing the graphics.

ULRICH SCHIEFER
TRUDGOTT J DIETRICH
BARRABA WILHELM
HELMUT WILHELM
University Eye Hospital, Department of Pathophysiology of Vision and Neuro-Ophthalmology, Schleicherstrasse 12-16, D-72076 Tübingen, Germany

Correspondence to: Ulrich Schiefer, MD, Department of Pathophysiology of Vision and Neuro-Ophthalmology, Schleicherstrasse 12-16, D-72076 Tübingen, Germany.

Accepted for publication 5 November 1997

Expression of transforming growth factor β superfamily and their receptors in the corneal stromal wound healing process after excimer laser keratotomy

EDITOR—Corneal stromal clouding (corneal haze) develops after excimer laser keratotomy. During the corneal wound healing process after excimer laser keratometry, abnormal subepithelial fibrous tissue is formed just under the abraded area, where keratocytes proliferate and extracellular matrix (ECM) components, including collagens (type III, IV, and VII), fibronectin, laminin, and tenascin, are deposited. 1-3 This abnormal ECM deposition is thought to correspond to the corneal haze.

The transforming growth factor β (TGF-β) superfamily contains many multifunctional proteins, including TGF-βs, activins, and bone morphogenetic proteins (BMPs). 4 They regulate cellular proliferation, differentiation, migration, and ECM production. 5 Through these functions, TGF-β is known to regulate the wound healing process in many tissue. For example, TGF-β accelerates the abnormal ECM deposition and scar tissue formation in the skin wound healing process in vivo. 6 TGF-β also accelerates the proliferation and ECM production of the cultured skin fibroblasts in vitro. 7 In the corneal cells, TGF-β and TGF-β receptors are expressed in resting status and in the wound healing process after injury. 8 TGF-β is reported to stimulate ECM production of keratocytes. These facts suggest that TGF-β is involved in corneal haze formation. In the present report, we tried to investigate the role of the TGF-β superfamily on the corneal stromal wound healing process and the corneal haze formation after excimer laser keratotomy.

CASE REPORT

The central areas measuring 6 mm in diameter of 20 corneas of European cats were abraded to 100 μm depth using an EC 5000 excimer laser (Nidek, Aichi, Japan). After excimer laser keratectomy, corneal haze was quantitated using a newly developed device (EAS-1000, Nidek, Aichi, Japan) that measures scattered light intensity of the cornea. 8 In parallel with the haze measurement, the expressions of TGF-βs, TGF-β type I and II receptors, activin type I, IB, and II receptors, BMP type IA, IB, and type II receptors, collagen (type I, III, and IV), fibronectin, and laminin were immunohistochemically observed in the cryosections of the corneas without treatment and 3 days, 1 week, 4 weeks, and 10 weeks after excimer laser keratometery.

COMMENT

Table 1 shows the intensity of the corneal haze and the expression of the TGF-βs, TGF-β superfamily receptors, and ECM components in the corneas before and after excimer laser keratometry.

Figure 1 (A) Expression of TGF-β3 without treatment. TGF-β3 is detected in the corneal epithelial cells. Expression of TGF-β3 in keratocytes is very weak. (B) 4 weeks after the excimer laser keratometry. The expression of TGF-β3 increases in the keratocytes which proliferate in the subepithelium of the laser irradiated area. Expression of TGF-β3 does not change in corneal epithelial cells (bar = 100 μm).

Table 1 The intensity of corneal haze, and expression of extracellular matrix components, TGF-βs, and TGF-β superfamily receptors

<table>
<thead>
<tr>
<th>Time</th>
<th>Control</th>
<th>1 week</th>
<th>4 weeks</th>
<th>10 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean corneal haze (SD)</td>
<td>7838 (1568)</td>
<td>14690 (1952)</td>
<td>34953 (3258)</td>
<td>16328 (2031)</td>
</tr>
<tr>
<td>Type I collagen</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Type III collagen</td>
<td>±</td>
<td>±</td>
<td>+</td>
<td>±</td>
</tr>
<tr>
<td>Type IV collagen</td>
<td>-</td>
<td>±</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Fibronectin</td>
<td>±</td>
<td>±</td>
<td>+</td>
<td>±</td>
</tr>
<tr>
<td>Laminin</td>
<td>-</td>
<td>±</td>
<td>++</td>
<td>±</td>
</tr>
<tr>
<td>TGF-β1, β2, β3-LAP</td>
<td>±</td>
<td>±</td>
<td>+</td>
<td>±</td>
</tr>
<tr>
<td>TGF-β receptors (type I and II)</td>
<td>±</td>
<td>±</td>
<td>+</td>
<td>±</td>
</tr>
<tr>
<td>Activin receptors (type I, IB, and II)</td>
<td>±</td>
<td>±</td>
<td>+</td>
<td>±</td>
</tr>
<tr>
<td>BMP receptors (type IA, IB, and II)</td>
<td>±</td>
<td>±</td>
<td>+</td>
<td>±</td>
</tr>
</tbody>
</table>

= Undetectable; ± = very weak; + = moderate; ++ = strong.
keratectomy. The corneal haze gradually increased and reached the peak 4 weeks after treatment. In the subepithelial tissue of the laser irradiated area, the keratocyte proliferation and expression increase of type III and type IV collagens, fibronectin, and laminin were observed. Among the TGF-β family and the TGF-β superfamily receptors, only the TGF-β1, β2, β3 (Fig 1), and TGF-β type I and type II receptors were significantly upregulated in the activated keratocytes under the regenerating epithelium 4 weeks after the treatment. The expression of activin receptors and BMP receptors were only slightly increased. The synchronised increase in the expression of TGF-βs, TGF-β receptors, the abnormal extracellular matrix deposition, and corneal haze formation suggests that TGF-β is involved in the activation of keratocyte function during the corneal stromal wound healing process and could affect corneal haze formation after excimer laser keratectomy.

YUICHI KAJI
Department of Ophthalmology, University of Tokyo School of Medicine, Tokyo, Japan

Cystoid macular oedema in patients with AIDS and cytomegalovirus retinitis on highly active antiretroviral therapy

RICHARD NEWSOM, TONY CASSWELL, EMMON O'MOORE and MARTIN FISHER

doi: 10.1136/bjo.82.4.456

Updated information and services can be found at:
http://bjo.bmj.com/content/82/4/456.1

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/