LETTERS TO THE EDITOR

Late dehiscence of healed corneal scars

EDITOR,—The stroma comprises about 90% of the total corneal thickness and is responsible for most of the corneal tensile strength. Presumably because of its avascularity, healing of the cornea in such wounds is slower than in other connective tissues. Continued histopathological changes in human corneal laceration wounds have been observed years after injury, despite meticulous original suture closure.

The wounds appear to undergo perpetual, dynamic remodelling, a fine balance between constructive and destructive processes. We report three cases of late, full thickness corneal wound dehiscence occurring spontaneously or after minor blunt trauma 17–56 years after the original injury.

CASE REPORTS

Case 1

A 61 year old man was referred for spontaneous corneal perforation right eye. At age 5, he had sustained a full thickness corneal laceration in this eye which was repaired with sutures. The patient did well with an uncorrected visual acuity of 20/50 right eye until the tantalum metal perforation 56 years later whereupon he noted the sudden onset of eye pain and loss of vision in this eye upon awakening 2 days before referral. He denied any recent eye trauma or antecedent vignettes of the eye. He was in excellent health with no previous history of corneal melting disorders. At the time of his first visit to us, the best corrected visual acuities were light perception right eye and 20/20 left eye. There was an inferonasal, 3 mm linear, vertically oriented corneal scar in the right eye not involving the limbus. The iris was incarcerated and externalised along an inferior 1.0 mm long incision in the left eye. The patient underwent repair of the dehiscence. The Seidel test was positive only upon provocation. The incarcerated iris was surgically released and the dehisced corneal scar was repaired with 10-0 nylon sutures. Two weeks after surgery, the uncorrected visual acuity improved to 20/200 left eye. The RF, ANA, ANCA, ESR, CBC, and chemical profile were normal.

Case 2

While using an electric saw, a 68 year old man sustained a perforating wood chip injury of the cornea in his right eye. The resulting peripheral corneal laceration was repaired with 10-0 nylon sutures. A month later, the patient underwent spontaneous extraction of a traumatic cataract in this eye. Subsequently, the best corrected visual acuity was 20/40 with a hard contact lens and spectacle overrefraction. Seventeen years after the injury, the corneal scar dehisced spontaneously in the absence of recent trauma. A peripheral tectonic penetrating keratoplasty was performed, completely excising the dehisced corneal scar. The patient later underwent a central, 8.0 mm, optical penetrating keratoplasty, combined with implantation of a posterior chamber intraocular lens by sulsus fixation. This resulted in a best corrected visual acuity of 20/20 in this eye.

Case 3

A 42 year old woman sustained a full thickness corneal laceration in the left eye. She noted mild soreness and a very slow decrease in vision in the left eye. Considering the mildness of the impact, she did not seek medical attention until her vision became noticeably worse. She presented to our clinic 2 weeks after the injury with a visual acuity of 20/20 right eye and counting fingers in the left eye. A self sealing, 5 mm, linear dehiscence of the corneal scar was found to be incarcerated with iris. The Seidel test was positive only upon provocation. The incarcerated iris was surgically released and the dehisced corneal scar was repaired with 10-0 nylon sutures. Two weeks after surgery, the uncorrected visual acuity improved to 20/200 left eye. The RF, ANA, ANCA, ESR, CBC, and chemical profile were normal.

COMMENT

Three of these cases illustrate the innate structural weakness of healed corneal scars. Two of the scars dehisced without any mechanical provocation. Although corneal scars become optically dense and hypercellular, they never regain the full original preinjury tensile strength.

Unsutured wounds, such as radial keratotomy incisions, are particularly weak.4 Even sutured full thickness wounds may not regain more than 50–60% of their original corneal tensile strength.5 In penetrating keratoplasty, rupture after blunt trauma may occur many years after surgery and always occurs at the graft host junction, the weakest point in the cornea.6 In full thickness corneal wounds, the discontinuity in Descemet’s membrane further deprives the cornea of another important source of structural strength. Ancillary factors which may further reduce wound integrity include diabetes mellitus, poor suturing technique, incarceration of uvea or vitreous, and entrapment of epithelium.

KAZ SOONG

J AIS FARJO

ALAN SUGAR

Department of Ophthalmology, University of Michigan Medical School

Correspondence to: H Kaz Soong, MD, W K Kellogg Eye Center, 1000 Wall Street, Ann Arbor, Michigan 48105, USA

Accepted for publication 15 March 1999

Transscleral thermothermy of choroidal melanoma with or without brachytherapy: a dilemma

EDITOR,—Transscleral thermothermy (TTT) is a new approach to the treatment of choroidal melanoma with heat. The early treatment results seem favourable with regard to local tumour control and retained visual acuity; no early metastasis was found.1 The reported rate of complications is low.2

The heat treatment is performed with a temperature calculated at 65°C, induced by an infrared diode laser (810 nm) with a large beam diameter (3 mm) and a long exposure time of 1 minute per application. These factors promote a deep penetration into the choroidal melanoma. The result is tumour necrosis up to 3.9 mm deep and occlusion of blood vessels in the treated area as shown on histopathology.3 Depending on the pigmentation of the tumour, the energy is raised or lowered stepwise until the desired effect occurs. The tumour is treated by overlapping applications extending beyond the margin of the tumour. The exposure time should not be shortened to less than 1 minute, as it takes 40 seconds to reach a temperature at subcoagulation level.

TTT is performed as an outpatient procedure and can be easily repeated. Treatment results can be evaluated in several ways. If the outcome is favourable when the choroidal melanoma develops into a scar on ophthalmoscopic examination, substantial regression of the tumour thickness is seen on ultrasonography together with an increased reflectivity on the diagnostic A-scan, and hypofluorescence is visible in the treated area on the early and late phases of the fluorescein angiogram. TTT is not indicated in melanomas patients with severe media opacities, in patients with insufficient dilatation of the pupil, or in elevated, peripherally located melanomas.

Simultaneous use of TTT with brachytherapy in the management of melanomas is called “sandwich therapy”. If the treatment is performed correctly, TTT is maximal at the top of the tumour and brachytherapy efficiently treats the base of the tumour.1,3 Combining both treatments has several advantages. It enabled us to treat patients with tumours thicker than 5 mm, generally the maximum height for ruthenium-106 brachytherapy.4 Insufficient melanoma regression and/or recurrences after a combined treatment might be retreated with TTT alone. The combination might also lead to a decreased radiation dose of the isotope used in brachytherapy.

In principle, TTT can also be applied as the sole therapy. A satisfactory local tumour control is reported in the early years after TTT as sole therapy for small choroidal melanomas.5 TTT as sole therapy seems especially attractive in treating small choroidal melanomas in and around the posterior pole. Visual outcome may be better after TTT than after brachytherapy because the laser beam, but not the radiation beam delivered by the radioactive plaque, can be focused.6 As the macular capillaries are very radiosensitive to brachytherapy, this may finally result in radiation...
maculopathy with a considerable loss of central vision. However, after extramacular applications of sole TTT, macular complications such as transient cystoid macular oedema may be also seen. A dense scotoma is generally produced by TTT at the time of application, whereas a scotoma after cryotherapy usually does not develop for up to a year or several years. If heat treatment is performed as sole therapy, effective treatment of the sclera over the tumour is as important as viabilisation of the tumour itself, because intra-episcleral tumour invasion is present in, respectively, 55.7% and 8.2% of patients with medium and large tumours.1 In a group of 21 patients with enucleated small melanomas,17 showed scleral ingrowth on histopathological examination.2 Intrasceral melanoma cells surviving treatment might be a focus for tumour recurrence, which is associated with a two to threefold higher risk of metastasis. This is evident from the results after photocoagulation treatment of choroidal melanomas showing a high rate of tumour regrowth. This might be attributed to the low density of phagocytes or penetration insufficiency to destroy the intrasceral melanoma cells.7

In TTT as sole therapy, the question arises as to whether the effect of the heat induced by TTT is evident, whereas choroidal melanoma is identical to the effect of the heat to the possible melanoma cells in the sclera. In one eye, intentionally enucleated after experimental TTT, total tumour necrosis up to the sclera was histopathologically examined. Despite heat damage to the inner layers of the sclera which was evident from scleral oedema and necrosis of sclerocytes, a cluster of tumour cells with a viable aspect was located near the inner border of the sclera.2 A recent clinicopathological report on two cases of recurrent juxtapapillary choroidal melanoma after TTT revealed tumour cells appearing histopathologically intact and presumably viable.8 One patient was insufficiently treated with TTT because of cataract, another patient was treated with TTT and brachytherapy. Interpreting these data, we have to keep in mind that a photolytic agent is often unable to ensure viability of melanoma cells in an enucleated eye after any treatment, especially in an underdected eye.

Unfortunately, no sensitive clinical techniques evaluate the effect of TTT on intra-episcleral tumour cells, their destruction, and the early development of extrascleral recurrences. To reduce the risk of insufficient treatment of the sclera and because episcleral tumour recurrences rarely develop as a late complication of brachytherapy, one may consider combining TTT with brachytherapy (the sandwich therapy).

TTT remains an investigative procedure until long term results are available. In the meantime we have to choose between TTT as sole or combined treatment for patients with choroidal melanoma.

Asymmetric diabetic retinopathy associated with Fuchs’ heterochromic cyclitis

Everson,—Diabetic retinopathy (DR), with its complications, is the leading cause of blindness among the working population in developed countries. Asymmetric diabetic retinopathy (DR) has been defined as proliferative disease in one eye and background or no retinopathy in the fellow eye, persisting for at least 2 years.3 Previous reports have described systemic and local factors associated with the development of asymmetric disease.4 These include unilateral carotid artery stenosis, choroidal scarring, complete posterior vitreous detachment, ambyopla, unilateral elevated intraocular pressure, optic atrophy, retinal pigment epithelial atrophy, myopia ≥5D, anisometropia >1D, concurrent retinal vascular disease, cataract extraction, vitreous loss, trauma, radiation, tumour, and unilateral recurrent panuvitis.

We observed a patient with proliferative DR in the right eye and no proliferative changes in the left eye which had Fuchs’ heterochromic cyclitis (FHC). In the absence of other known risk or protective factors, FHC was felt to have protected against the development of proliferative DR. The significance of this new observation and the possible mechanisms are discussed.

CASE REPORT

The patient was a 56 year old insulin treated type II diabetic. He also had systemic hypertension and was a smoker. FHC of the left eye was diagnosed on the basis of typical stellate keratic precipitates scattered over the entire corneal endothelium, chronic low grade anterior uveitis, iris heterochromia, and posterior subcapsular cataract. Pharmacological testing with 4% cocaine excluded a diagnosis of Horner’s syndrome in the left eye.

He suffered widespread vascular complications of his combined diabetic and hypertensive state, including nephropathy and peripheral vascular disease culminating in left below knee amputation. These were accompanied by the development of new vessels at the disc in the right eye (Fig 1A), but not in the background changes in the left eye, although ischaemic changes were evident on fundus fluorescein angiography (Fig 1B). At his initial assessment in the ophthalmology clinic, best corrected Snellen visual acuities were right eye 6/6; left eye 6/9. The refractive errors were right eye +1.00/ +0.50<180; left eye +2.00 DS. Intraocular pressures were 16 mm Hg either eye. Retinal pigment epithelial changes were present at the left macula (Fig 1B) but there was no extensive retinal pigment epithelial atrophy or choriotinal scarring. There was neither proliferative diabetic retinopathy nor clinically significant macular oedema in either eye.

Nine months after the first examination he developed clinically significant macular oedema in the right eye. This was treated with focal argon laser with resolution of the macular oedema. Two years later new vessels at the right disc (Fig 1A) were noted and panretinal photocoagulation was performed (2707 burns in two sessions). Despite laser treatment, vitreous haemorrhage ensued. Further laser treatment to the right eye (1149 burns) led to regression of new vessels at the right disc (Fig 2A). Cataract progressed in the eye with FHC so that 5 years after his first visit to the ophthalmology department left phacoemulsification with heparin coated intraocular lens implant was required. Extracapsular cataract extraction is associated with accelerated retinopathy progression postoperatively.5 Accelerated retinopathy was defined as the development of any of the following within 6 months postoperatively: new clinically significant macular oedema, recurrent clinically significant macular oedema in eyes that had preoperative resolution of macular oedema after focal laser treatment, increased hard exudates or intraretinal haemorrhages in eyes.
with clinically significant macular oedema at the baseline examination, or new onset proliferative diabetic retinopathy. No such progression occurred in this patient. Six months after phacoemulsiﬁcation with intraocular lens implantation there was no clinically significant macular oedema and best corrected visual acuity was 6/6. Despite evidence of worsening retinal ischaemia there was no progression to proliferative diabetic retinopathy (Fig 2B).

He was investigated for any evidence of local or systemic factors which may have contributed to the asymmetric retinopathy. There was no anisometria. Intracocular pressures were equal in both eyes. There was no posterior vitreous detachment in either eye, no optic atrophy, and visual ﬁelds were full. Ultrasound of the carotids excluded haemodynamically signiﬁcant stenosis. Retinal macroroculization and microcirculation were assessed by fundus ﬂuorescein angiography. Arm-retina times were right eye 11.1 seconds; left eye 11.0 seconds (normal 10.9 SD 2.6 seconds).

COMMENT

Kohner et al have put forward a working hypothesis for the pathogenesis of DR. The ﬁrst change is hyperperfusion initiated by hyperglycaemia and inﬂuenced by high blood pressure and impaired autoregulation. The hyperglycaemia damages both pericytes and endothelial cells. The increased blood ﬂow results in further damage to vessel walls, occlusion of some vessels, hypoxia, and ischaemia, resulting in proliferative DR. Factors which reduce or normalise retinal blood ﬂow therefore have a protective effect in DR. Although the aetiology of FHC is unknown, a vascular pathogenesis is one of the proposed hypotheses for its cause. An immune complex vasculitis may be the cause of abnormal halinisation of the iris vessel walls previously described. Ultimately there is narrowing of the vessel lumen, or even occlusion. This may explain the ruboesis and neovascular glaucoma sometimes seen in eyes with FHC. Symptomatic theories for FHC have also been proposed, although a symptactic aetiology has never been demonstrated. Loewenstein and Thompson felt there was inadequate evidence to support the proposed connection with sympathetic paralysis or denervation. Despite the arguments put forward in their review to reject the association between FHC and hemifacial atrophy (Parry-Romberg syndrome), and the hypothesis of a sympathetic defect implicated in both diseases, many authors still support this theory. Sympathetic paralysis explains the increased permeability of the blood-ocular barrier, with escape of cell elements, primarily albumin and lymphocytes, into the aqueous and vitreous. If denervation hypersensitivity occurs, because of an increase in receptor sites following destruction of postganglionic neurons, there may be rebound vasoconstriction with reduction in blood ﬂow. The arm-retina time measured by ﬂuorescein angiography is a measure of the vascular system supplying the eye. The absence of any haemodynamically signiﬁcant carotid artery stenosis and the normal arm-retina time suggest that there were no haemodynamic factors, even in the more distal branches of the internal carotid system, which contributed to the asymmetric retinopathy. In fact, pulsatile ocular blood ﬂow in the left eye was normal (1101 µl/min), despite signs of ischaemia on ﬂuorescein angiogram (Fig 2B). Ocular blood ﬂow in the right eye was also normal (824 µl/min), although this was after extensive panretinal photocoagulation. Our hypothesis, therefore, is that FHC protected his left eye from progression to proliferative diabetic retinopathy.

This case suggests that FHC protected against proliferative DR but the mechanism is unclear and merits further consideration. Hopefully, this new observation will help to increase our understanding of these complex diseases and eventually affect the formulation of clinical practice.

D C MURRAY
V C T SUNG
M P HEADON
Wolverhampton and Midland Counties Eye Infirmary
Correspondence to: M P Headon, Wolverhampton and Midland Counties Eye Infirmary, Compton Road, Wolverhampton WV2 16QH
Accepted for publication 9 March 1999

COMMENT

The advent of CCC has led to the presentation of specific complications of this technique. These are capsulorhexis syndrome, capsular bag distension, and LEC migration and proliferation onto the posterior capsule. It is now well recognised that capsule contraction syndrome is due to proliferation of residual anterior LECs that leads to ﬁbrous metaplasia and eventual reduction of the capsular opening. Electron microscopy studies have revealed these to be cells resembling ﬁbroblasts surrounded by a dense collagen matrix.

Vision can be impaired not only because of opacification of the media but also because of tilting, decentration, and buckling (foldable only) of the IOL. In severe cases the zonular traction may lead to IOL dislocation and retinal detachment. Anterior capsular shrinkage occurs more rapidly in the first 6 weeks postoperatively but continues slowly thereafter.

Sickenberg et al have claimed that the stronger centrifugal force of the AcrySof IOL's

Anterior capsular phimosis following Acrysof lens insertion

EDITOR,—Anterior capsular phimosis is one of the complications of continuous curvilinear capsulorhexis (CCC). It was ﬁrst described by Hansen and the term “capsule contraction syndrome” was coined by Davison in 1993. Capsular contraction has previously been reported to occur with poly(methylmethacrylate) (PMMA) and with silicone intraocular lenses (IOLs), particularly plate haptic silicone IOLs. Several authors have reported that the anterior lens capsule is more stable when in contact with an acrylic IOL (AcrySof) compared with PMMA and silicone lenses.

To our knowledge this is the ﬁrst case report of anterior capsular contraction following implantation of an AcrySof IOL.

CASE REPORT

A 77 year old white woman underwent uncomplicated phacoemulsiﬁcation with insertion of a foldable acrylic (AcrySof, Alcon Laboratories, Hemel Hempstead) IOL (23.0 dioptre, 6.0 mm optical diameter, model number MA60BM) through a superiorly sited scleral tunnel (June 1998). The capsulorhexis diameter was between 5.0 and 5.5 mm. No attempt was made to remove anterior lens epithelial cells (LECs) during irradiation aspiration of lens cortex. Ophthalmic history was negative for uveitis, pseudoxefoliation, and myopia. Postoperatively she made a good recovery, achieving an unaided visual acuity of 6/9. Three months later she presented again because of reduced vision (6/24 corrected). Dilated examination revealed ﬁbrilosis as well as marked phimosis of the anterior capsular opening (Fig 1A). The contraction was symmetrical and no decentration or tilting of the lens was noted. There was no posterior capsular opaciﬁcation of note. Nd:YAG radial anterior capsulotomy (193.5 mJ TE) was carried out (Fig 1B). She regained a visual acuity of 6/9 when reviewed 1 month later (Fig 1C).

CASE REPORT
A 43 year old Asian man presented with a 3 week history of blurred central vision and metamorphopsia affecting his left eye. Ocular examination revealed best corrected visual acuity of 6/9 in both eyes. Funduscopy revealed a neurosensory retinal detachment overlying the left fovea, with bilateral multiple retinal pigment epithelial changes. Fundus fluorescein angiography (FFA) and indocyanine green angiography (ICGA) confirmed the diagnosis of bilateral CSR (Figs 1 and 2).

The neurosensory retinal detachment in the left eye resolved spontaneously. Seven months after his initial presentation, he developed sudden loss of vision in his left eye to counting fingers at 1 metre. Ocular examination revealed a large macular subretinal haemorrhage, which progressed to a dense vitreous haemorrhage after a week. Ultrasoundography revealed no evidence of a retinal detachment. The vitreous haemorrhage subsequently cleared spontaneously leaving an atrophic macular scar.

Central serous retinopathy complicated by massive bilateral subretinal haemorrhage

Editor,—Central serous retinopathy (CSR) is a common cause of visual disturbance in the younger age group. Spontaneous visual recovery occurs in the majority of patients. A minority of patients, however, suffer permanent visual loss commonly caused by chronic retinal pigment epithelial changes. We report a devastating complication of untreated CSR, with bilateral massive subretinal and vitreous haemorrhages.

Central serous retinopathy complicated by massive bilateral subretinal haemorrhage

A SCISCIO
C LUI
Sussex Eye Hospital, Brighton

Correspondence to: Christopher Liu, Sussex Eye Hospital, Eastern Road, Brighton BN2 5BF.
Accepted for publication 15 March 1999
COMMENT

Massive subretinal macular haemorrhage can occur secondary to a number of causes such as choroidal neovascularisation (CNV), retinal artery macroaneurysm, idiopathic polypoidal choroidal vasculopathy, blood dyscrasia, or trauma. Histopathological analysis of patients with age related CNV complicated by massive subretinal haemorrhage may be associated with rupture of a large choroidal blood vessel.\(^1\)

CNV is known to occur infrequently in patients with CSR complicated with laser photoacoagulation.\(^2\) In only two previous cases has CNV developed spontaneously in patients with CSR.\(^3\) Massive subretinal haemorrhage, however, was not the feature in these two reported cases. In our case, the use of ICGA had helped to understand the mechanical events (Figs 2 and 3) but the underlying aetiology remains unclear.

The pathogenesis of CSR has been disputed. Recent studies with ICG suggest focal choroidal hyperpermeability as the possible initial event, leading to the formation of serous retinal pigment epithelial detachment. Excessive fluid accumulation then leads to pressure on the retinal pigment epithelium, resulting in either mechanical disruption or retinal pigment epithelial decompensation.\(^4\) The chronic secondary retinal pigment epithelial changes, if extensive, may predispose to the development of CNV. In our patient, the sudden onset of haemorrhage in both eyes may in part be explained by the presence of disorganised and dysfunctional choroidal blood vessels. The latter leads to an initial increase in choroidal hyperpermeability (hence the CSR) and later, the tendency to rupture suddenly resulting in massive haemorrhage (as illustrated by our case).

P.L.I. Lip
L.MOWATT-DIXON
M W HOPE-ROSS
The Birmingham and Midland Eye Centre,
City Hospital NHS Trust, Birmingham
Correspondence to: Mrs Peck-Lin Lip, The
Birmingham and Midland Eye Centre,
City Hospital NHS Trust, Dudley Road, Birmingham
B18 7QH.
Accepted for publication 17 March 1999

Figure 3 (A) Colour fundus photograph of the right eye shows extensive macular haemorrhages. Blood is present beneath the retinal pigment epithelium and the neurosensory retinal detachment. (B) Fluorescein angiography shows a hyperfluorescent spot (arrow) represents a mechanical disruption (a hole) of the retinal pigment epithelium and ICG streams through the defect into the subretinal layer, forming a blood level as seen in the colour fundus photograph.

Eighteen months later, he again presented with a sudden loss of vision in his right eye. Best corrected visual acuity was 6/24 in the right eye and counting fingers in the left eye. Funduscopy confirmed a massive macular subretinal haemorrhage in the right eye. Fluorescein angiography showed extensive masking. ICGA demonstrated the presence of a haemorrhagic retinal pigment epithelial detachment (Fig 3). His visual acuity in the right eye returned to 6/12 after 3 months. Physical examination and investigations revealed no evidence of underlying systemic disease. Full blood count and coagulation screen were normal.

Various phenotypic expressions of familial aniridia with a PAX6 mutation

COMMENT

The human PAX6 gene is 422 amino acids long and has paired box and homeobox DNA binding domains. These are separated by a 78 amino acid linker segment and followed by a 152 amino acid C-terminal region rich in proline, serine, and threonine.\(^5\) In our cases, the PAX6 mutation is predicted to result in amino acid substitutions from the 339th position and a truncation at the 344th position, resulting in a truncated protein product that ultimately excludes part of the PST domain. Truncated proteins generally tend to be degraded, thus haploinsufficiency of PAX6 was believed to cause aniridia phenotype. However, biochemical assay recently indicated that truncation mutations in the PST transactivation region of PAX6 result in dominant negative mutants.\(^6\) A truncated protein of nearly normal size may function for a short time.

The affected individuals in this family had a wide variation of phenotypes, including thinning and the absence of the iris, various features of cataract, and foveal hypoplasia. Hittner et al.\(^7\) described suspected familial aniridia cases in which expressivity was variable as was seen in our cases. Probably many modifiers affect a variety of phenotypic expression in a pedigree with the same PAX6 mutation. Because the PAX6 gene is a master control gene,\(^8\) it may control numerous downstream genes, whose expression patterns probably are slightly different among each individual. Af-
Table of contents

Figure 1 (A) PCR-SSCP analysis of exon 11 reveals a band shift in patients I-1, II-1, II-2, and II-3. (B) Sequencing of the normal and mutant alleles of I-1 identifies a single base deletion at nucleotide 1434 that causes a translational frameshift in the proline, serine, and threonine (PST) domain. Other affected members had the same mutation.

Figure 2 Photograph of anterior segment of case I-1 (A, right eye; B, left eye) with corneal pannus, absent iris, dense cataract; case II-1 (C, right eye; D, left eye) with corneal pannus and iris thinning; case II-3. (B) Sequencing of the normal and mutant alleles of I-1 identifies a single base deletion at

Iopidine allergy causing lower eyelid ecropion progressing to cicatrical entropion

EDITOR—Apraclonidine hydrochloride 1% (Iopidine) is a selective u2-adrenergic agonist used to treat glaucoma or to protect against pressure spikes before laser treatments. Up to 48% of patients taking Iopidine for over 3 weeks develop follicular conjunctivitis.1 Periocular contact dermatitis was also associated with Iopidine allergy in 62% of the cases.2 We report a case of an Iopidine allergic reaction presenting with eyelid ecropion which further progressed to cicatrical entropion.

CASE REPORT

A 64 year old man was referred with a 6–8 month history of non-resolving conjunctivitis, epiphora, and resultant left lower eyelid ecropion. The conjunctivitis was resistant to treatment with Ocuflow OS four times daily. As a result, the referring provider added Tobradex (tobramycin) and Naphcon A (naphazoline), and referred him for evaluation. His ocular history was notable for bilateral pterygium excision 2 years earlier and open angle glaucoma. The patient’s current ocular medications included Timoptic 0.5% in both eyes twice daily, Iopidine left eye twice daily, and Tobradex in left eye three times daily. Of historical note, the patient began the Iopidine approximately 2 months before developing these symptoms in the left eye. The patient had no known drug allergies. Corrected visual acuities were 20/20 right eye and 20/100 left eye. External examination revealed left upper eyelid ptosis, left lower punctal and eyelid ecropion, and diffuse left eye papillary conjunctivitis (Fig 1).

The Iopidine and the Tobradex were discontinued. The patient began prednisolone (Pred-Forte 1%) left eye every 2 hours in addition to his current regimen of Timoptic and Ocuflow. Within 3 weeks, his left eye improved dramatically. However, he developed a cicatrical entropion with symblepharon, keratinised lower eyelid margin, and persistent left upper eyelid ptosis requiring surgical correction (Fig 2). Tissue samples submitted for histological examination revealed lymphocytic infiltration, admixed with plasma cells, and foci of a haemorrhage within the conjunctiva and subepithelial stroma. Immunohistochemical preparations revealed 50% B cells and 50% T cells, leading to the diagnosis of reactive lymphoid infiltrate.

Figure 2 Left lower eyelid symblepharon which caused entropion 3 weeks after discontinuation of Iopidine and topical steroid treatment.
COMMENT

Our finding of reactive lymphocytic infiltrates in the conjunctival specimen is consistent with a type IV hypersensitivity reaction and the diagnosis of Iopidine allergy. To our knowledge, this is the first report of an ectropion progressing to a cicatricial entropion resulting from an Iopidine allergy response. Iopidine has been reported to cause upper eyelid retraction and entropion. Similarly, dipivefrin, another adrenergic agent and a topical antiglaucoma medication, has been reported to cause lower eyelid ectropion; however, this ectropion resolved 3 weeks after drug discontinuation. In our case, the inflammation induced by the topical medication caused the initial ectropion which progressed upon resolution and scar formation to cicatricial entropion. Iopidine induced conjunctivitis can produce both ectropion and entropion.

MICHELLE T BRITT
MICHAEL A BURNSTINE
Department of Ophthalmology and Doheny Eye Institute, University of Southern California School of Medicine, Los Angeles, California

Correspondence to: Michael A Burnstine, MD, Doheny Eye Institute, University of Southern California, 1450 San Pablo Street, Los Angeles, CA 90033, USA.
Accepted for publication 16 March 1999

Anterior capsular phimosis following Acrysof lens insertion

A SCISCIO and C LIU

Br J Ophthalmol 1999 83: 987
doi: 10.1136/bjo.83.8.987c