Abstract

Aims—To assess the long term efficacy of everting sutures in the correction of lower lid involutional entropion and to quantify the effect upon lower lid retractor function.

Methods—A prospective single armed clinical trial of 62 eyelids in 57 patients undergoing everting suture correction of involutional entropion. Patients were assessed preoperatively and at 6, 12, 24, and 48 months postoperatively. The main outcome variables were lower lid position and the change in lower lid retractor function.

Results—When compared with the non-entropic side, the entropic lid had a greater degree of horizontal laxity and poorer lower lid retractor function. These differences however, were not significant. At the conclusion of the study and after a mean follow up period of 31 months, the entropion had recurred in 15% of the patients. There were no treatment failures in the group of five patients with recurrent entropion. The improvement in lower lid retractor function after the insertion of lower lid everting sutures did not reach statistical significance. There was no significant difference between the treatment failure group and the group with a successful outcome with regard to: the degree of horizontal lid laxity or lower lid retractor function present preoperatively; patient age or sex; an earlier history of surgery for entropion. There was neither a demonstrable learning effect nor a significant intersurgeon difference in outcome. The overall 4 year mortality rate was 30%.

Conclusions—The use of everting sutures in the correction of primary or recurrent lower lid involutional entropion is a simple, successful, long lasting, and cost effective procedure.

(£ Br J Ophthalmol 1999;83:1060–1063)

Involutional entropion is one of the most commonly encountered eyelid malpositions. Several aetiological factors are thought to be important in the development of involutional entropion and these include: (a) horizontal lid laxity, caused by stretching of the canthal tendons and/or the tarsal plate; (b) vertical lid laxity, caused by attenuation, dehiscence, or disinsertion of the lower lid retractors and/or the orbital septum; (c) migration of the preseptal orbicularis muscle to override the pretarsal orbicularis muscle; and (d) appositional pressure of the lids during eyelid closure. Every structure of the eyelid has been the object of surgery. Various medical treatments including skin patches, botulinum toxin, and tissue glue have been advocated. Everting sutures have been used for the correction of lower lid entropion since the time of Hippocrates and remain the most simple form of surgical treatment. Without exception, everting sutures have been considered to offer only a temporary cure for patients with entropion.

Despite a plethora of publications describing various surgical techniques, none has attempted to quantify the effects of surgery upon the eyelid variables thought to be important in the aetiology of involutional entropion. We attempted to measure the lower lid retractor function and the degree of horizontal lid laxity present, firstly, in order to quantify the effects of our intervention and, secondly, to attempt to identify those patients in whom everting sutures are more likely to fail.

Patients and methods

After informed consent was obtained, 62 eyelids from 57 subjects were entered into a prospective single armed clinical trial of patients undergoing everting suture correction of lower lid involutional entropion (Fig 1). Follow up was complete in 38 of 57 patients (17 patients died during the study, one patient was enucleated, and one patient was lost to follow up between the 24 and 48 month visits). The mean duration of follow up was 31 months (range 1–49).

After the conjunctiva was anaesthetised using topical 0.4% benoxinate, approximately 1 ml of 2% lignocaine containing 1 in 200 000 units of adrenaline was injected subcutaneously into the lower lid. The surgical technique is essentially the same as that described by Feldstein. The distance between the punctum and the lateral canthus is divided into quarters with the junction between the most medial and adjacent quarters being the entry point for the first suture. The other two pairs of sutures are inserted at the junction of the remaining quarters. The double armed 4/0 plain catgut sutures (W 813, Ethicon, UK) are prepacked in alcohol which was not rinsed off before use. The sutures are passed in a horizontal mattress fashion, the first needle engages the lower lid retractors which are seen as a subconjunctival, infratarsal white band at the lowest point of the inferior conjunctival fornix. The skin of the lower lid is pulled downwards everting the anterior lamella and the needle is advanced upwards to pierce the skin 3 mm below the lid margin. The other arm of the suture is passed
2 mm lateral to the first arm in an identical fashion. The sutures are tied tightly to produce 1 mm of postoperative ectropion (Fig 2). No topical antibiotics are used and the sutures are allowed to fall out spontaneously.

Patients were assessed preoperatively and at 6, 12, 24, and 48 months postoperatively. Preoperative and postoperative data collection included an estimation of the lower lid retractor function and the horizontal lid laxity (HLL) for both eyelids. The lower lid retractor function was indirectly estimated by measuring the vertical excursion in millimetres of the centre of the lower lid margin between extreme upgaze and downgaze. This measurement was termed the lower lid excursion (LLE). The HLL was estimated by measuring with Castroviejo calipers the distance in millimetres the centre of the posterior margin of the lower lid could be distracted forwards from the limbus. All intraoperative and postoperative complications were noted. The 48 month postoperative visit was conducted by CMS who was masked to the treatment side. We included in our definition of success those patients who died during the study period who were noted to have a normal lid position at the preceding visit. Similarly, in calculating the cumulative failure rates we included these patients in order to simplify the reporting of the results.

The differences between the entropic and non-entropic lids in terms of the LLE and HLL and also the postoperative change in the LLE and HLL were analysed using the paired Student’s t test. The group of patients with a successful outcome were compared with those in the treatment failure group using the χ² test. For all statistical tests p values of <0.05 were considered to be statistically significant.
Table 1 Comparison of the treatment success and failure groups

<table>
<thead>
<tr>
<th></th>
<th>Success (no (%))</th>
<th>Failure (no)</th>
<th>p Value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal lid laxity (HLL)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>minimal (4–8 mm)</td>
<td>27 (82)</td>
<td>6</td>
<td>0.382</td>
</tr>
<tr>
<td>maximal (9–13 mm)</td>
<td>26 (90)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Lower lid excursion (LLE)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>minimal (2–4 mm)</td>
<td>35 (90)</td>
<td>4</td>
<td>0.215</td>
</tr>
<tr>
<td>maximal (5–7 mm)</td>
<td>18 (78)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Patient age (years)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53–79</td>
<td>24 (83)</td>
<td>5</td>
<td>0.957</td>
</tr>
<tr>
<td>80–95</td>
<td>24 (86)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Patient sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>male</td>
<td>19 (76)</td>
<td>6</td>
<td>0.133</td>
</tr>
<tr>
<td>female</td>
<td>29 (91)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Previous surgery</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>recurrent entropion</td>
<td>5 (100)</td>
<td>0</td>
<td>0.337</td>
</tr>
<tr>
<td>primary entropion</td>
<td>48 (84)</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Timing of surgery</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st half of study</td>
<td>27 (87)</td>
<td>4</td>
<td>0.688</td>
</tr>
<tr>
<td>2nd half of study</td>
<td>28 (90)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Surgeon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>32 (89)</td>
<td>4</td>
<td>0.370</td>
</tr>
<tr>
<td>B</td>
<td>21 (81)</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

*χ² test.

Discussion
INTERLID COMPARISON IN UNILATERAL ENTROPION
This study did not demonstrate a significant difference in the function of the lower lid retractors or in the degree of horizontal laxity when the entropic and non-entropic lids were compared. Jones et al.9 described a loss of lower lid retraction movement accompanying down-gaze in involutional entropion and attributed this to an attenuation of the lower lid retractors. Both this study and that of Benger and Musch1 demonstrated a significant decrease in horizontal lid laxity following retractor tightening. As our quantitative method of assessing retractor function failed to distinguish the entropic from the non-entropic side it is perhaps not surprising that we failed to demonstrate any significant change in lower lid retractor function after the insertion of evertting sutures.

POSTOPERATIVE LID POSITION
At the conclusion of the study, the entropion had recurred in only nine of 61 (15%) lids with no treatment failures in the group of five patients with recurrent entropion. Recurrence of entropion following retractor tightening is almost exclusively associated with coexisting, uncorrected horizontal lid laxity.5 10 17 28 There was, however, no significant difference in the degree of horizontal lid laxity (or lower lid retractor function) present preoperatively when the treatment success and treatment failure groups were compared. Indeed, the treatment failure group demonstrated a smaller degree of horizontal lid laxity than the treatment success group (7.2 mm vs. 8.1 mm). Neither the age nor the sex of the patients influenced the outcome.

CONCLUSION
Everting sutures can be inserted quickly, simply, safely, cheaply (the cost of each suture pack is £2.13) and often at the patient’s first appointment. As the overall mortality rate of 30% demonstrates, the vast majority of patients with entropion are elderly, often with many of the medical and social problems experienced by this group. In contrast with incisional lid surgery, anticoagulation therapy need not be omitted nor surgery delayed in the hypertensive patient.

There were no significant perioperative or postoperative complications. In the nine patients in whom the entropion recurred, no significant lid scarring was encountered during the repeat surgery (Quickert). The overall cosmesis was excellent, CMS was unable to detect which side had undergone the procedure in over 95% of cases examined (Fig 3). Our overall recurrence rate of 15% after 48 months of follow up is significantly higher than the frequently published recurrence rate of 0%5 26 29 30 following incisional surgery. These impressive results in part reflect the various authors’ oculoplastic interest and expertise. In
Everting suture correction of lower lid involutional entropion

contrast, evertting sutures can be quickly and correctly inserted by a practitioner with minimal surgical experience. There was no evidence of the presence of a learning curve nor a significant intersurgeon difference in outcome. It is generally accepted that the long term likelihood of success of any entropion surgery (including evertting sutures) is dependent upon the correction of the underlying impairment in lower lid retractor function. Benger and Musch demonstrated a significant increase in lower lid retractor function after the insertion of evertting sutures.

Based upon the results of this clinical trial, evertting sutures can be recommended in the management of lower lid involutional entropion, particularly for the group of patients mentioned above.

Everting suture correction of lower lid involutional entropion

Mark Wright, Dugald Bell, Chris Scott and Brian Leatherbarrow

Br J Ophthalmol 1999 83: 1060-1063
doi: 10.1136/bjo.83.9.1060

Updated information and services can be found at:
http://bjo.bmj.com/content/83/9/1060

These include:

References
This article cites 23 articles, 2 of which you can access for free at:
http://bjo.bmj.com/content/83/9/1060#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
Eye Lids (60)
Epidemiology (1072)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/