Numerous subretinal hypopigmented tracks with small haemorrhages were noted in the superior retina, and periocular haemorrhages were observed around the inferior branch of the central retinal vein (Fig 2). Fluorescein angiography showed numerous hyperfluorescent tracks without dye leakage. The patient’s blood test revealed a slightly elevated white blood cell count (10 200 × 10^3/l; normal <9000) and elevated IgE in the serum (680 U/ml; normal <250).

On the following day pars plana vitrectomy was performed and the worm was found partially migrated into the subretinal space of the macula. The worm was aspirated successfully through a 20 gauge silicone tipped needle and submitted for parasitological study; however, it was lost during transportation to a different laboratory. Parasitological study of the patient’s serum detected an antibody to *Dirofilaria*. Six months after surgery, the patient's visual acuity was 20/20 in the right eye and 20/100 in the left. No inflammation was present in the anterior segment or vitreous cavity bilaterally. Ophthalmoscopic examination disclosed a white worm, approximately 3 disc diameters in length, equivalent to about 4.5 mm, moving slowly in the macula at the epiretina. Epiretinal and intraretinal haemorrhages were observed in and around the macular region. The body of the worm was tapered at one end and slightly rounded at the other (Fig 1). A round, preretal haemorrhage was observed on a branch of the superonasal retinal artery, which could have been the route of entry into the eye.

COMMENT

Our patient owned two dogs, and her ocular findings could be differentiated from toxocariasis, in which only larvae of *Toxocara canis* can infect humans. The length of the *Toxocara* larva is about 400 μm, and grows no longer. Although no direct microscopic evidence of *Dirofilaria* infection was obtained in our patient, a positive antibody to *Dirofilaria* in the serum indicated its infection. There have been many reports of intraocular filariasis; however, the filariae were removed and identified in only six of 56 cases reviewed by Beaver in 1989.1 Direct parasitological microscopic examination is necessary for accurate diagnosis, but serological study can be helpful, as shown in the present case.

Various types of management for intraocular parasites have been reported. Direct photocoagulation to the worm body has been successfully reported in cases with filaria-like worms2 and in one case with insect parasites.3 It has been suggested that photocoagulation denatures the parasite proteins and mitigates the immune reaction.4,5 If the parasite is located in the posterior pole of the retina, however, photocoagulation may cause permanent visual impairment, and surgical removal should be selected. Furthermore, photocoagulation would make parasitological identification impossible. Preretinal or subretinal parasites were retrieved successfully by pars plana vitrectomy in several reported cases.6,7 In the present case, the visual acuity was still 20/50/6 months postoperatively. The migrating worm may have caused considerable damage to macular function, therefore, we believe that intraocular parasites should be removed as soon as possible.

ACKNOWLEDGEMENTS

The authors are grateful to Dr Keizo Yamaguchi for parasitological examination and Mr Shingo Yamazaki for fundus photographs.

SHUICHI YAMAMOTO
MASANORI HAYASHI
SHINOBU TAKEUCHI
Department of Ophthalmology,
Toho University Sakura Hospital, Sakura, Japan

Correspondence: Shuichi Yamamoto, MD, Department of Ophthalmology, Toho University Sakura Hospital, 564-1 Shimoshiru, Sakura, Chiba 2858741, Japan.

Accepted for publication 19 July 1999

cornea had diffuse punctate staining with linear epithelial and perineurial infiltrates (Figs 1 and 2). She had a mild anterior uveitis. Acanthamoeba was strongly suspected. Corneal epithelium was removed for microscopy, culture, and histology. Her contact lens case and solutions were also sent for culturing. Acanthamoeba was cultured from both corneal epithelium and lens case, but not the lens solutions. She was treated with topical polyhexamethylene biguanide 0.02% (PHMB) and prednisolone 0.3% as well as oral furibuprofen (Froben, Knoll Ltd, Nottingham). Six weeks after diagnosis she was asymptomatic with a visual acuity of 6/9. The eye was quiet, though some corneal infiltrates remained.

COMMENT
Acanthamoeba are free living protozoa commonly found in soil and water, including bathroom tap water. Acanthamoeba keratitis is an uncommon but potentially devastating condition. The number of cases diagnosed in the United Kingdom has steadily risen over the past 20 years owing to increased awareness of the condition and the rise in contact lens wear. Radford et al found that daily wear disposable contact lenses were associated with greatly increased risk of acanthamoeba keratitis compared with other lens types and wear systems.

Multivariable analysis showed that this was largely attributable to a lack of disinfection, the use of non-sterile saline, and the use of chlorine based disinfection rather than alternative chemical systems. It was concluded that the ‘low care’ philosophy of daily wear disposable lenses had become ‘no care’ in practice.

Clinical course of acute zonal occult outer retinopathy in a patient with a normal fundus examination and multifocal electroretinogram

EDITOR—Patients with acute zonal occult outer retinopathy (AZOOR) may present with a normal fundus examination and almost normal fluorescent angiography (FA), despite severe loss of visual field and electroretinogram (ERG) abnormalities. The lesion defined zones of the retinal receptor cells; however, the cause of the disease remain unclear. There is also no established conclusion about progression of visual field loss. With a multifocal ERG (m-ERG), a large number of retinal locations can be stimulated simultaneously and local responses can be extracted independently in a single recording session. High resolution topographic mapping of retinal function also is possible. A previous report indicates its efficiency in the diagnosis of AZOOR. There are no reports about the clinical course. Thus, using m-ERG and static perimeter (Humphrey 30-2), the alteration of retinal function in a clinical course of a patient with AZOOR was investigated.

CASE REPORT
A healthy 26 year old woman presented to our outpatient clinic complaining of acute onset of visual disturbance in her left eye. Her corrected visual acuity was 20/20 in her right eye, and 20/100 in her left. The pupils were equal and reactive normally. Slit lamp and fundus examination, computed tomography, magnetic resonance imaging scan, and general examination were normal. HVF 30-2 demonstrated blind spot enlargement breaking out to the inferotemporal periphery in the left eye (Fig 1, top). Full field ERG showed grossly reduced A and B waves in the left eye. The FA showed slight leakage from peripapillary capillaries. Indocyanine green (ICG) angiography showed slight hypofluorescence of the macular area at a late phase.

Analysis of the mean deviation in HVF over the clinical course corresponded with the visual acuity (Fig 1, bottom). In addition, m-ERG (Veris III, Tomey, Nagoya, Japan) was analysed during the clinical course. In this examination, the fundus was divided into four fields and the sum of amplitudes in each group was measured (Fig 2, top). In the left eye, the sum of amplitudes was altered individually but all of them were affected during the clinical course. Only in the inferotemporal area did it correspond with HVF. The values in the right eye were about 5000 ω in each focus. This is almost the same as normal volunteers in our clinic (data not shown).

COMMENT
AZOOR may be precipitated by various retinal disorders and is characterised by rapid visual field loss which cannot be explained by the ophthalmoscopic changes resulting from the underlying disease. The ERG is abnormal, indicating that the field loss is due to retinal dysfunction. The cause of the acute damage to sharply defined zones of the retinal receptor cells in the absence of visible fundus changes in patients with AZOOR is unknown. In some previous reports, an apparent response to corticosteroid therapy suggested that an inflammatory and perhaps an immune reaction may play a part in the disease; however, there is no specific evidence for an immune abnormality. An infectious aetiology could also be the cause of AZOOR.
Correspondence to: Masahiko Shimura, MD, Department of Ophthalmology, School of Medicine, Tohoku University, Sendai 980-8574, Japan

Slight leakage of ICG would suggest such a microcirculatory disturbance that can not be detected by FA or ICG. Slight leakage in FA and slight hypofluorescence on the late phase in ICG would suggest such a microcirculatory disorder.

When better understanding of the aetiology and pathophysiology of AZOOR is available, the clinical response to appropriate therapy may perhaps best be followed by m-ERG.

KANAKO Y ASUDA
MASAHIKO SHIMURA
MICHIRU NORO
MITSURU NAKAZAWA
MAKOTO TAMAI
Department of Ophthalmology, School of Medicine, Tohoku University, Sendai 980-8574, Japan

Correspondence to: Masahiko Shimura, MD, Department of Ophthalmology, School of Medicine, Tohoku University, Sendai 980-8574, Japan.

Accepted for publication 26 March 1999

Hypotonic maculopathy following pneumatic retinopexy: a UBM study

Editor,—Pneumatic retinopexy is a promising surgical alternative in selected cases of retinal detachment.

We report a rare complication, to our knowledge the first ever reported, of this procedure—namely, hypotonic maculopathy, caused by a wound dehiscence on a patient who had previously undergone a standard extracapsular extraction with posterior chamber implant. Ultrasound biomicroscopy (UBM) proved to be a valuable adjunct in both the diagnosis and management of this complicated case.

CASE REPORT

A 63 year old white man, complaining of a shadow in his right visual field, was referred to our department in April 1997 for further management. Ocular history was notable for bilateral extracapsular cataract extraction with posterior chamber lens implantation (PC/ IOL), right eye in January 1997 and left eye in June 1996. Visual acuities were 20/25 in both eyes. IOPs were within normal limits. Anterior segment examination was unremarkable with well positioned IOLs. Fundal examination of his right eye revealed a superotemporal macula on rhegmatogenous retinal detachment, produced by a single horseshoe retinal break around 10 o’clock. After the risks and benefits of pneumatic retinopexy were explained to the patient he chose to have the procedure.

Cryopexy was applied to the tear and after an anterior chamber paracentesis was performed 0.7 ml of 100% SF, gas was injected into the vitreous cavity 3.5 mm behind the limbus inferotemporally.

He tolerated the procedure well and made an excellent recovery with the retina totally attached. He maintained a 20/30 visual acuity right eye, IOP remained within normal limits until 3 months later. At that time an IOP of 6 mm Hg and a deterioration of visual acuity to 20/70 was noted. Initially this visual loss was attributed to a posterior capsule opacification and a YAG capsulotomy was performed.

Between October 1997 and November 1997 he was presented to our unit on three occasions complaining of further deterioration of vision to 20/200, IOPs between 3–5 mm Hg, and a full blown hypotonic maculopathy. After 3 months of hypotony of "unknown origin", a diagnosis was made by a glaucoma specialist using indentation gonioscopy revealing a dehiscence of the cataract wound. A preoperative UBM study confirmed the presence of an internal wound gap, behind the limbus, superotemporally, 3 mm in circumference. Ultrasonically the wound dehiscence was depicted as a narrow slit (Fig 1) with a flat inadvertent bleb above which was not apparent clinically. A surgical repair of the wound was decided upon. Intraoperatively no definite dehiscence could be clinically identified. Balanced salt solution through a 30 gauge needle was repeatedly injected under pressure to the anterior chamber but this failed to localise any suspicious area. At this point, based on the ultrasonic study, two 10-0 nylon interrupted sutures were placed through the sclera parallel to the limbus in the suspicious area. These bites were moderately deep in an attempt to engage the internal flap of the cataract wound.

Two weeks postoperatively, the pressure normalised (IOP 12 mm Hg), maculopathy was reversed, and visual acuity improved to 20/50.

Hypotonic maculopathy is an unusual and, to our knowledge, the first reported complication of this kind after pneumatic retinopexy. We hypothesise that the original cataract wound did not heal properly and the additional cryoprobe manipulation caused the

Figure 1 UBM picture of right eye showing the external part of the dehiscence cataract wound, as a narrow slit, before repair (area between arrows). There is a full blown hypotonous maculopathy in this eye, with VA 20/200.

Figure 2 UBM picture of right eye showing the same area after repair. Note that the external part of the wound is totally closed (area between arrows) while internal wound gap appears to be more pronounced postoperatively. However, at this point the leak is rectified. IOP and macula are normal with VA of 20/50.
wound to leak. The UBM study provided us with an interesting insight into how the scleral suture repair may have worked to correct the wound leak as shown in Figure 2. The fact that hypotony resolved after suturing the wound, indicated that the external part of the wound was secure (no slit is apparent) despite the fact that the internal part of the wound was gaping even more postoperatively. This finding implies, therefore, that only minimal overall alteration of the wound architecture postoperatively, sufficient to rectify the leak.

We believe that UBM is a valuable adjunct in the management of similar cases by clearly identifying both the presence and exact location of leak. Finally, pneumatic retinopexy should be performed with caution, especially in cases of previously operated eyes with large incision wounds.

Letters

IOANNIS M ASLANIDES
Department of Ophthalmology, Vitreo-renal Unit, St Michael's Hospital, University of Toronto, Canada and VEIC (Vardisnoyannion Eye Institute of Crete), Greece

CHARLES J PAVLIN
Department of Ophthalmology, Ocular Oncology Clinic, Princess Margaret Hospital, University of Toronto, Canada

LOUIS R GIAVEDONI
Department of Ophthalmology, Vitreo-renal Unit, St Michael's Hospital, University of Toronto, Canada

Correspondence to: Dr Ioannis M Aslanides, Vardisnoyannion Eye Institute of Crete. University of Crete Medical School, Voutes PO Box 1352, Iraklion-Crete 71110, Greece

Accepted for publication 26 March 1999

Bilateral electrical cataract

EDITOR,—Electric trauma is not uncommon in India where majority of the population lives in the rural setting. Few cases of electric cataract have been reported in literature probably because few patients survive the high voltage of current that induces cataract formation. Most patients with electric cataract have no subjective complaints early on but become aware of the reducing visual function several months later.1

CASE REPORT

A 26 year old man complained of gradual and painless diminution of vision in both eyes, right more than left, for the past 2–3 years. There was a history of an overhead high tension electric transmission cable accidentally falling on the patient’s head 4–5 years earlier. This had resulted in immediate burn to the scalp. The patient was visually asymptomatic till about 1 year after the mishap, when he began to notice the gradual fall in vision that had progressed to its present state.

Corrected visual acuity was 20/200 right eye and 20/60 left eye. A 15 × 2.5 cm linear, sagittal scar extending from the frontal to the occipital region of the head was noticed. The lids, conjunctiva, cornea, and pupils showed no abnormality in either eye. Fundus examination was unremarkable. Slit lamp examination revealed multiple, mid-peripheral snowflake-like anterior subcapsular lens opacities in both eyes, right greater than left.

In the right eye some of these opacities were seen encroaching into the visual axis and additionally a few posterior subcapsular opacities were noticed (Fig 1).

In view of the history of electrical injury and classic location and typical appearance of the lens opacities, a diagnosis of bilateral electric cataract was made. Extracapsular cataract extraction (ECCE) with posterior chamber intraocular lens implantation was undertaken later in left eye. The intraoperative and postoperative course were uneventful and the patient has achieved corrected visual acuity of 20/20 in both eyes.

COMMENT

Involvement of the lens exclusively, sparing other ocular structures is rare. This case documents such a possibility and also highlights the salient features involving electric trauma to the lens. The scalp burn in this case represents the entrance wound for the electrical energy but the lack of an exit wound makes this case particularly peculiar. Both entry and exit sites for the electric current have been reported by all previous authors.

The excellent surgical results noted in both eyes of this patient are in keeping with the similar result reported by Portellos et al.2 This observation should encourage the ophthalmologist to undertake surgery for electric cataract, where necessary, without any undue concern.

USHA K RAINA
DEVEN TULI
Guru Nanak Eye Centre, Maulana Azad Medical College, New Delhi, India

Correspondence to: Dr Usha K Raina, 427 Hava Singh Block, Asiad Village Complex, New Delhi-110 049, India.

Accepted for publication 7 April 1999

Monckeberg’s sclerosis in temporal artery biopsy specimens

EDITOR,—Temporal artery biopsies are performed routinely on patients suspected of having giant cell arteritis. Of 131 pathology specimens examined at University of Illinois at Chicago Eye Center from 1975 to 1998, the most common diagnosis was atherosclerosis with myointimal fibrosis (63%) followed by giant cell arteritis (13%). In about 6% of cases we encountered calcific sclerosis confined to the tunica media which was associated with mild tissue disorganisation surrounding the calcific plaque and disruption of the internal elastic lamina (Fig 1).

Monckeberg’s sclerosis as seen in these specimens was first described by Monckeberg in 1903. It commonly affects medium size muscular arteries and is described in femoral, tibial, radialis, coronary, cerebral, and visceral arteries.1 However, its association with the temporal artery is uncommon. The infrequent occurrence of this condition in the temporal artery and the presence of a fragmented inter-
nal elastic lamina should not be erroneously interpreted as sequelae of previous arterial inflammation. The pathophysiology of Monckeberg’s arteriosclerosis is still unclear, but it can be induced in animal models by injecting adrenalin, nicotine, parathyroid hormone, and vitamin D. In addition, lumbar sympathectomy has been shown to promote occurrence of Monckeberg’s arteriosclerosis of the lower extremities in humans. Automatic dysfunction from diabetic neuropathy is thought to be responsible for the occurrence of Monckeberg’s in diabetic patients. Unlike atherosclerosis, Monckeberg’s arteriosclerosis is a benign condition and does not cause vascular thrombosis. In conclusion, Monckeberg’s arteriosclerosis of the temporal artery may be seen occasionally in the temporal artery. It is an interesting histological diagnosis that has little clinical significance but can be recognised in temporal biopsy samples.

BIENVENIDO V CASTILLO JR
ELISE TORCZYNSKI
DEEPAK P EDWARD

Department of Ophthalmology, University of Illinois at Chicago, Chicago, IL, USA

Correspondence to: Dr Deepak P Edward, Department of Ophthalmology, University of Illinois at Chicago, 1855 W Taylor Street, Chicago, IL 60612, USA

Accepted for publication 9 April 1999

2. Silbet S, Lippmann H, Gordon E. Monckeberg’s arteriosclerosis is still unclear, but it can be induced in animal models by injecting adrenalin, nicotine, parathyroid hormone, and vitamin D. In addition, lumbar sympathectomy has been shown to promote occurrence of Monckeberg’s arteriosclerosis of the lower extremities in humans. Automatic dysfunction from diabetic neuropathy is thought to be responsible for the occurrence of Monckeberg’s in diabetic patients. Unlike atherosclerosis, Monckeberg’s arteriosclerosis is a benign condition and does not cause vascular thrombosis. In conclusion, Monckeberg’s arteriosclerosis of the temporal artery may be seen occasionally in the temporal artery. It is an interesting histological diagnosis that has little clinical significance but can be recognised in temporal biopsy samples.

Figure 1 Early venous phase fluorescein angiogram of the right eye, macular area. Note the easily visible telangiectatic retinal capillaries (arrows). These abnormal vessels showed significant leakage of fluorescein in the late phase of the angiogram.

Bilateral optic disc oedema associated with latanoprost

EDITOR,—Latanoprost is a recent addition to the medical management of raised intraocular pressure in chronic open angle glaucoma and ocular hypertension. It is a potent ocular hypotensive agent with few ocular or systemic side effects.

We report a case of bilateral optic disc oedema developing soon after commencing treatment with latanoprost which resolved once therapy was stopped.

CASE REPORT

An asymptomatic 64 year old woman presented with raised intraocular pressure. She maintained good general health, had no significant JNA, and was not on any medication. Snellen visual acuities were 6/5 in both eyes. The intraocular pressures were 28 mm Hg right eye and 26 mm Hg left eye. Ocular examination was otherwise unremarkable with open angles, normal optic nerves, and full Humphrey 24-2 visual fields. She was thus diagnosed as having ocular hypertension and consented to enter a prospective double masked trial comparing some of the intraocular pressure lowering drops. Therapy was commenced with one of the drugs involved in the study and at a 1 month review she reported no problems with the drops. The intraocular pressures had lowered to 16 mm Hg in both eyes and the examination was otherwise unchanged. At her third visit 2 months later, she was again asymptomatic with visual acuities of 6/5 in both eyes and intraocular pressures of 15 mm Hg. However, examination of the optic nerves revealed bilateral oedema which was more prominent in the left eye. There were no signs of uveitis in either eye, pupillary reflexes were normal, colour vision and Amsler testing were normal, and the visual fields were full. At this point the code for the trial drug was broken and it was seen that she had been using latanoprost 0.005% eye drops at night to both eyes over the 3 month period. A neurological consultation failed to find any neurological abnormality and all haematological and biochemical analyses were normal. A computed tomogram scan with contrast showed no abnormality and she was discharged from neurological review. Follow up in the eye clinic revealed no change after 72 hours. The latanoprost was stopped and the disc swelling had largely resolved at 1 week. By 10 weeks...
both optic nerves looked normal. Visual acuities were still 6/6 in both eyes and there was no loss of colour vision or visual field. The intraocular pressures had increased to 22 mm Hg in both eyes.

COMMENT

Latanoprost is a prostaglandin F	extsubscript{2}α analogue which acts by increasing uveoscleral outflow. Side effects include increased iris pigmentation, hypertrichosis and increased eyelash pigmentation, anterior uveitis in patients with complicated glaucoma or in those having had previous incisional surgery, and cystoid macular oedema occurring soon after beginning latanoprost in pseudophakic or aphakic eyes. Ocular hypotony with choroidal effusions and facial rash have also been attributed to latanoprost. To the best of our knowledge, optic disc oedema associated with latanoprost has not previously been described. The mechanism behind this association is unclear. One may not be surprised to see optic nerve swelling in association with signs of posterior uveitis or hypotony but in this case it occurred without any sign of ocular inflammation and the lowest recorded intraocular pressure was 15 mm Hg. It may be feasible that the perfusion to the optic nerve heads via the short posterior ciliary arteries was compromised by a prostaglandin-like action manifesting as disc oedema and that latanoprost acid and prostaglandin F	extsubscript{2}α at high concentrations could cause vasoconstriction of bovine ciliary arteries and a similar action cannot be discounted in this case. The rapid resolution of the swelling with seemingly no long term sequelae once latanoprost was stopped would perhaps support this hypothesis.

Owen Stewart, Louise Walsh, Milend Pande
Department of Ophthalmology, Hull Royal Infirmary, Hull

Correspondence to: Mr Owen Stewart, Department of Ophthalmology, St James’s University Hospital, Leeds LS9 7TF.

Accepted for publication 12 April 1999

Retinal neovascularisation in Goltz syndrome (focal dermal hypoplasia)

EDITOR.—This is the first reported case of Goltz syndrome with documented peripheral retinal non-perfusion with subsequent retinal neovascularisation and vitreous haemorrhage.

In the eye this represents solely a mesodermal disturbance compared with the more common disturbance associated with microphthalmia, aniridia, and neuroectodermal disturbances, such as colobomata or microphthalmia.

CASE REPORT
Goltz syndrome was diagnosed shortly after birth in a girl with a linear lesion of atrophic skin following Blaschko's lines on the trunk and symmetrical syndactyly of the third to fourth fingers and second to third toes. Initial ophthalmologic screening revealed no ocular abnormalities. Dental screening revealed the congenital absence of one deciduous incisor. Screening of the parents, brother, and sister revealed no evidence of skin, skeletal, and ocular anomalies. When she was aged 5 years, routine ophthalmologic examination showed a vision of right eye 6/6 and left eye 6/5, with a minor right myopia.

Age 7 years, she complained of a brief episode of photopsia and floaters in the right eye. Vision was right eye 6/20 and left eye 6/6. Examination revealed a right vitreous haemorrhage, telangiectastic vessels temporal to the macula, and temporal equatorial fibrotic vessels and haemorrhage. Fluorescein angiography showed bilateral peripheral retinal non-perfusion and right temporal neovascularisation (see Figs 1 and 2). This was treated conservatively for 2 years; however, after six bleeds within 3 months indirect retinal photoocoagulation to the areas of non-perfusion was performed with subsequent new vessel regression within weeks.

COMMENT
Focal dermal hypoplasia is a rare disorder of ectodermal and mesodermal dysplasia originally described by Goltz et al. It is characterised by congenital atrophic skin changes often associated with herniation of the subcutaneous fat; skeletal anomalies, in particular syndactyly, polydactyly, or adactyly as well as scoliosis, kyphosis, spina bifida occulta, rib and vertebral anomalies, and dental anomalies, especially hypodontia.

Ocular anomalies occur in 40% of cases. Colobomata have been reported in one third of cases, then less frequently microphthalmia, strabismus, nystagmus, and ectopia lentis. Other reported ocular anomalies include anophthalmia, corneal clouding, aniridia, heterochromia, and optic atrophy. Rarely ectropion and ptosis may occur as well as lid margin or conjunctival papillomatous lesions (histologically angiofibromas). 1, 3, 5, 11 Only one case of cloudy vitreous has been reported. This was in association with microphthalmia, aniridia, and lens subluxation. 2 Retinal sclerosis or hypopigmentation was reported in Goltz's original case report. 1 No attempt was made to explain these findings. In our case, there was peripheral retinal non-perfusion and temporal retinal telangiectasia with subsequent neovascularisation and vitreous haemorrhage.

The differential diagnosis of retinal vascular anomalies associated with skin lesions includes incontinentia pigmenti (IP) and Cockayne's syndrome. Although focal skin atrophy may occur in IP, the initial skin lesions are vesicles and bullae which may later become pigmented maculae. The skin lesions in Cockayne's syndrome are pigmented scars due to light sensitivity and trauma. Neither syndrome is associated with digital anomalies.

The genetic abnormality in Goltz syndrome remains to be determined. Most cases are sporadic. It is generally thought to be X-linked dominant with lethality in males, like IP; however, 9% of cases are male. These are proposed to be the result of half chromatid deletions seen in microphthalmia with linear skin defects (MLS) and that of microphthalmia, dermal aplasia, and sclerocornea (MIDAS), which are now considered to be distinct entities. 2 The wide variation in severity of expression is thought to be due to mosaicism.

A A S DUNLOP
Medical Retinal Unit, Moorfields Eye Hospital, City Road, London

J HARPER
Department of Dermatology, Great Ormond Street Hospital for Children, London

A M P HAMILTON
Medical Retinal Unit, Moorfields Eye Hospital, City Road, London

Correspondence to: Dr A A S Dunlop, 66 King Street, Newcastle, NSW 2300, Australia
Accepted for publication 19 April 1999

REFERENCE
pressure was recorded at less than 4 mm Hg. Fundal examination revealed evidence of a retinal tear although details were obscured by a diffuse vitreous haemorrhage. An ultrasound examination showed a vitreous haemorrhage and large retinal tear but no evidence of a scleral perforation.

An examination under anaesthesia performed the following day confirmed that there was no scleral rupture and indirect ophthalmoscopy confirmed the findings of diffuse vitreous haemorrhage and a retinal tear.

At the 2 week postoperative clinic visit, visual acuity had improved to 6/18. There was 2+ cells in the anterior chamber and the intraocular pressure was 24 mm Hg. Posterior segment findings were an intraocular haemorrhage and a retinal tear.

Four months later, the best corrected visual acuity was 6/36. The anterior chamber activity had settled; the intraocular pressure was 10 mm Hg. Posterior visual acuity had improved to 6/18. There was no evidence of retinal detachment.

COMMENT

Airbags are designed to protect the driver from direct impact from the steering wheel, dashboard, and windscreen. They are designed to inflate in 10 ms in response to sudden deceleration and during deployment, the airbag is propelled out of its storage compartment at speeds of more than 100 mph. Following inflation the airbag deflates slowly within seconds.

Facial and ocular injuries associated with airbags have been reported in the literature. Skin abrasions, burns, and eyelid ecchymoses are the most common facial injuries. Reported ocular injuries include orbital fractures, keratitis, corneal abrasions, hyphaema, angle recession, and lens subluxation. In the posterior segment, vitreous and retinal haemorrhage, commotio retinae, retinal tears and dialyses, and choroidal ruptures have been reported. To our knowledge, this is the first reported case of retinitis sclopeteria secondary to airbag inflation.

Although airbags have clearly been shown to reduce serious morbidity and mortality associated with road traffic accidents, they are associated with a number of injuries directly attributable to their inflation. Some of these are serious ocular injuries and it is important for ophthalmologists and others involved with trauma cases to be aware of these complications. A full ophthalmic assessment is mandatory in all cases and this should include indentation ophthalmoscopy. A variety of posterior segment injuries have been reported in the literature but this is the first report of retinitis sclopeteria resulting from airbag deployment.

R H Y ASARIA
A ZAMAN
P M SULLIVAN

Moorfields Eye Hospital, City Road, London EC1V 2PD

Correspondence to: Mr Asaria.
Accepted for publication 19 April 1999

Specular microscopic findings of corneal deposits in patients with Bietti’s crystalline corneal retinal dystrophy

EDITOR—In 1937, Bietti first described three cases of tapetoretinal degeneration characterised by yellowish glistening retinal crystals, tapetoretinal atrophy with choroidal sclerosis, and marginal crystalline deposits of the cornea. Although more than 100 cases of crystalline retinopathy have been reported, crystalline deposits of the corneal limbus have been observed in only four out of 52 Japanese patients with crystalline retinopathy. Recently, observation using specular microscopy has been reported to be useful in detecting crystalline deposits at the limbus of patients with crystalline corneal retinal dystrophy. Therefore, in this study, we examined four patients with crystalline retinopathy using specular microscopy and it was found that the same vessels could be seen. Therefore it is suggested that crystalline deposits were found in the patients with more advanced retinopathy. It is supposed that corneal deposits and fundus deposits are essentially the same and it is suggested that crystalline retinopathy is caused by systemic abnormality. Although the exact pathogenesis of crystalline deposits is still uncertain, it may be that these deposits are different from vitreous crystals; vitreous crystals may be present in patients who do not have crystalline deposits.

One of the patients was followed up for more than 1 year. The change of the deposits was observed in this patient and it is suggested that crystalline deposits occurred. In conclusion, it is thought that the deposits observed are crystalline deposits. More crystalline deposits are needed to clarify these possibilities.

YUKO WADA
Department of Ophthalmology, Tohoku University School of Medicine, Sendai Japan

MITSURU NAKAZAWA
Department of Ophthalmology, Hirosaki University School of Medicine, Hirosaki, Aomori, Japan

TOSHIKI ABE
TAKASHI SHIONO
MAKOTO TAMAII
Department of Ophthalmology, Tohoku University School of Medicine, Sendai Japan

Correspondence to: Yuko Wada, MD, Department of Ophthalmology, Tohoku University School of Medicine, 1-1 Seiryomachi, Aoba-ku, Sendai, 980-8774, Japan.
Accepted for publication 19 April 1999

Retinitis sclopeteria associated with airbag inflation

R H Y ASARIA, A ZAMAN and P M SULLIVAN

Br J Ophthalmol 1999 83: 1088
doi: 10.1136/bjo.83.9.1088j

Updated information and services can be found at:
http://bjo.bmj.com/content/83/9/1088.3

These include:

References
This article cites 4 articles, 0 of which you can access for free at:
http://bjo.bmj.com/content/83/9/1088.3#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/