Diagnosis of external ocular infections: microbiological processing and interpretation

EDITOR,—I read with interest the recently published article by Pinna et al,1 and compliment the authors for bringing to light the important issue of external ocular infections associated with coagulase negative staphylococci (CoNS). Ocular microbiologists rarely pay attention to the speciation of this group of bacteria and various species involved in ocular infections are generally passed off as *Staphylococcus* species or CoNS. However, in isolation, this group of staphylococci needs special attention with respect to their role in pathogenicity. Generally, *S epidermidis* and other CoNS along with corynebacteria and propionibacteria are normal commensals of the conjunctival sac and lids; therefore samples from the external ocular surface resulting in a light growth on primary solid culture medium like blood agar or from a thioglycolate broth, are more likely to be contaminated with contamination.2 In our laboratory and many others across the world, a bacterial isolate (more so a known commensal organism) from corneal scrapings or conjunctival lid swabs is considered significant if it is consistent with the clinical signs and fulfills any one of the following criteria: (1) results of direct smear of the sample are consistent with culture; (2) the same organism is grown in multiple media; or (3) the same organism is grown from repeated specimens. However, Pinna et al, in their article, have not indicated adherence to any such criteria while selecting isolates for their study, though they have labelled the 55 isolates tested by them as "clinically significant." Their methodology of including just two media (thioglycolate broth and Sabouraud’s dextrose agar) as primary culture media also does not conform to the recommended methods of microbiological investigation of blepharitis, conjunctivitis, and keratitis.3 Though the authors did not intend to determine the pathogenicity of CoNS in external ocular infections, the methodology details provided by them can be misleading. Another concern raised by their article is the interpretation of bacterial susceptibility testing by agar disc diffusion (Kirby-Bauer method). The disc diffusion technique requires labelling of bacteria as resistant, sensitive, or intermediate. The authors have not clarified the way the "intermediate" group was dealt with, or was no such group noticed in any of the 55 isolates tested by them? Similarly, the reason for testing susceptibility to penicillin is far from clear since CoNS are known to be resistant to penicillin and penicillin is not commonly used to treat external ocular infections. Moreover, much valuable data could have been obtained by determining the minimum inhibitory concentration of the antibiotics against CoNS.

S AVSRTI SHARMA
L V Prasad Eye Institute, L V Prasad Marg, Banjara Hills, Hyderabad - 500 034, AP, India

Reply

EDITOR,—We thank Dr Sharma for her interest in our article on the identification and antibiotic susceptibility testing of coagulase negative staphylococci (CoNS) isolated in corneal/external infections. Apart from being a common component of the normal ocular flora, CoNS may occasionally be important ocular pathogens and cause chronic blepharitis, acute conjunctivitis, and suppurative keratitis.

As stated by Dr Sharma, a bacterial isolate from corneal scrapings or conjunctival lid swabs is grown from repeated specimens. However, when a bacterial isolate is consistent with the clinical signs, isolation of the organism even from a single medium can be considered significant. In our study, corneal scrapings for Gram stain were performed only on the patients with suppurative keratitis. In all cases of the Gram stain showed the presence of grape-like clusters of Gram positive cocci. Follow up cultures performed about 12 hours after the last dose of medication showed eradication of the infecting organism in all 45 patients. According to our and other authors’ experience (Leverent DB, presented at the AAO Annual Meeting, San Francisco, 1997), thioglycolate broth is an adequate, cost effective, primary culture medium for the detection of aerobic and anaerobic bacteria in external ocular infections, especially when the patients show clear signs and symptoms of infection.

Antibiotic susceptibility tests were determined by agar disc diffusion (Kirby-Bauer method), a technique which labels bacteria as "resistant", "intermediate", or "sensitive". Although we defined helpful or "intermediate" isolates (Table 1), our main concern was to draw attention exclusively to the large number of "resistant" strains. Indeed, in Table 2 of the published article we reported the ratio "resistant" isolates/total isolates. Dr Sharma’s criticism on this point is difficult to understand, since in a recent paper she and her co-workers included "resistant" and "intermediate" strains in a single group labelled as resistant, instead of maintaining the distinction between the two groups.

Susceptibility to penicillin was tested because our microbiologists are involved in a study on resistance to β lactams in CoNS isolated from different sites (blood, eye, etc). As part of this survey, penicillin resistant isolates were also tested for resistance to methicillin (data not shown).

The Kirby-Bauer method is generally recommended for routine antibiotic susceptibility testing of bacteria.4 On the other hand, this method was also used extensively by Sharma and co-workers in their paper.5 Determining the minimal inhibitory concentration may provide more useful information, especially while testing clinically relevant antibiotics such as vancomycin, teicoplanin, and methicillin.

ANTONIO PINNA
Department of Biomedical Sciences, Section of Experimental and Clinical Microbiology, University of Sassari, Sassari, Italy

LEONARDO A SECHI
Department of Biomedical Sciences, Section of Experimental and Clinical Microbiology, University of Sassari, Sassari, Italy

GIOVANNI PADDIA
Institute of Microbiology, Università Cattolica del Sacro Cuore, Roma, Italy

Laser pointers can cause permanent retinal injury if used inappropriately

EDITOR,—The authors previously published a brief report in a widely circulated ophthalmic review periodical (*Eye News*) on the potential risk of permanent injury from the inappropriate use of laser pens.1 The article had been prompted by two events—firstly, a flood of reported cases in the popular media of the "blinding" effects of laser pens on drivers, soccer goalkeepers, and members of the general public, and, secondly, the referral to our department for clinical assessment of police and fire service personnel who had been exposed to laser pen light. Examination of the clinical cases demonstrated no permanent injury. We were also asked to review data determined for a number of laser pens that had been subjected to analysis by Edinburgh Environmental and Consumer Services Department. Many of these laser pens were mislabelled, either by exhibiting American standard classification (different from European), or simply by being inaccurately classified. Subsequently, a number of laser pens have been sent to us for examination, pending police investigations. Many of these lasers are class 3B devices according to the European Laser classification, and are therefore considered potentially hazardous. None the less, we concluded that the normal blink and aversion response would prevent retinal damage from transient exposure. However, it had also been brought to our attention that the cost of these laser pens, and laser key rings, was such that they were being sold and subjected to analysis by Edinburgh Environmental and Consumer Services Department. Many of these laser pens were mislabelled, either by exhibiting American standard classification (different from European), or simply by being inaccurately classified. Subsequently, a number of laser pens have been sent to us for examination, pending police investigations. Many of these lasers are class 3B devices according to the European Laser classification, and are therefore considered potentially hazardous. None the less, we concluded that the normal blink and aversion response would prevent retinal damage from transient exposure. However, it had also been brought to our attention that the cost of these laser pens, and laser key rings, was such that they were being...
Marshall. About the theoretical risk of injuries from star-
without permanent retinal damage. There have also been successful
laser beam for the longest period. We con-
new “toys”, the game of “chicken” being won
purchased by children. A new version of the
aware of the potential for retinal injury from
should minimise potential hazards”. McGhee et al confused the issue of classifi-
color and potential risk in their periodical
all the classifications were dependent on a
in the United States does not suddenly become more hazardous by travel-
no retina. So, in the United States and the European Union, it is still the same laser and still has the same risk profile as it had in the United States as a 3A system.
Almost all of the UK database for retinal damage that is incorporated in the various codes of practice was derived through collabora-
tions between my laboratory and the then Institute of Aviation Medicine, Farnborough, Hampshire. A number of studies in all laser safety data is that empirical data
in all laser safety data is that empirical data
individual may have been at high risk as a result of
in the absence of an empirical biophysical study, their case does not support their conditions.
In their final paragraph, McGhee et al agree that the risks of permanent retinal injury are remote, but they state that “there can never be zero risk”. In all safety criteria documents the aim is to reduce risk to an insignificant level. I reiterate that current US safety standards satisfy these criteria. I also reiterate that, notwithstanding the report of Luttrull and Hallisey, to date there is no evidence of irreversible retinal damage sustained from viewing laser pointers.

JOHN MARSHALL
Department of Ophthalmology, UMDSS,
St Thomas’s Hospital, London SE1 7EH

Reply

EORTOR.—In writing this article I addressed five issues. Firstly, to counteract media “hype” on the “blinding potential” of laser pointers by explaining the biophysical principles involved in beam tissue interactions and, as a conse-
expression of confusion generated by a
from such a database: the first is that we have
and hyperfluorescence in the macula. The authors concluded, “laser-
ial—namely, guilt by association. Luttrull and Hallisey were confronted by a patient whose visual acuity was 20/20. Would the fundus of the individual have been examined, and a fluorescein angiogram undertaken, unlike other cases” had been stated? Furthermore, the individual claimed an exposure of 30–60 seconds to a device with a nominal maximum output power of 5 mW; an exposure period over this time would be associated with eye movement displacement of the retinal image and could not result in thermal damage. In a previous study we exposed stabi-
lised animal eyes to a 5 mW HeNe laser for 5 minutes without observing retinal damage. Remember also, that in order to observe retinal
damage from clinical diode laser systems 50 mW or more are required. In the cited paper, the patient claimed to have noted a red central scotoma but presumably should have seen a green afterimage. The headache reported is indicative of anxiety rather than being related to any retinal damage mechanism. The finding of a window defect on ultrasonography would also be inappropriate in that if a suprathreshold expo-
sure had been sustained then a leak would have been apparent, not a window defect. Finally, the authors discuss the possibility that this individ-
ual may have been at high risk as a result of racial pigmentation. Again this is erroneous, because although a marginally higher risk would have been conferred by melanin for ther-
mal insult, greater pigmentation would have lowered the risk in relation to a greater than 10 second photochemical mechanism. Given the inability of a 5 mW system to generate thermal transients of sufficient magnitude to induce retinal damage, and in the absence of an empirical biophysical study, their case does not support their conditions.

A recent article by Luttrull and Hallisey is therefore of significant importance to any ophthalmologist dealing with clinical cases relating to laser pen exposure. In this reported case, a 34 year old Hispanic male who was reviewed 2 days after deliberately staring into the beam of a class 3A (USA) laser pointer, held 8–10 inches from the eye, for 30–60 seconds. The laser device in question had a maximum power rating of 5 mW at a wavelength of 670 nm. Although the subject maintained 20/20 vision with a normal Amsler chart, he exhibited a focal disturbance of the retinal pigment epithelium in the left nasal macula deficiency of his central scotoma. This right eye of this 34 year old was entirely healthy on intraocular fluorescein angio-
While transient exposure is unlikely to cause macular damage, this case
tential hazards”.

Although we agree the risks of lasting injury from laser pointing devices are remote, it cannot categorically be stated that there is no risk. While transient exposure is unlikely to cause macular damage, this case
classifications varied between codes of prac-
to give guidance to casualty and medical person-
the potential for laser damage if these items were used inappropriately.

A recent article by Luttrull and Hallisey is therefore of significant importance to any ophthalmologist dealing with clinical cases relating to laser pen exposure. In this reported case, a 34 year old Hispanic male who was reviewed 2 days after deliberately staring into the beam of a class 3A (USA) laser pointer, held 8–10 inches from the eye, for 30–60 seconds. The laser device in question had a maximum power rating of 5 mW at a wavelength of 670 nm. Although the subject maintained 20/20 vision with a normal Amsler chart, he exhibited a focal disturbance of the retinal pigment epithelium in the left nasal macula deficiency of his central scotoma. This right eye of this 34 year old was entirely healthy on intraocular fluorescein angio-
While transient exposure is unlikely to cause macular damage, this case
classifications varied between codes of prac-
to give guidance to casualty and medical person-
the potential for laser damage if these items were used inappropriately.

A recent article by Luttrull and Hallisey is therefore of significant importance to any ophthalmologist dealing with clinical cases relating to laser pen exposure. In this reported case, a 34 year old Hispanic male who was reviewed 2 days after deliberately staring into the beam of a class 3A (USA) laser pointer, held 8–10 inches from the eye, for 30–60 seconds. The laser device in question had a maximum power rating of 5 mW at a wavelength of 670 nm. Although the subject maintained 20/20 vision with a normal Amsler chart, he exhibited a focal disturbance of the retinal pigment epithelium in the left nasal macula deficiency of his central scotoma. This right eye of this 34 year old was entirely healthy on intraocular fluorescein angio-
While transient exposure is unlikely to cause macular damage, this case
classifications varied between codes of prac-
to give guidance to casualty and medical person-
the potential for laser damage if these items were used inappropriately.

A recent article by Luttrull and Hallisey is therefore of significant importance to any ophthalmologist dealing with clinical cases relating to laser pen exposure. In this reported case, a 34 year old Hispanic male who was reviewed 2 days after deliberately staring into the beam of a class 3A (USA) laser pointer, held 8–10 inches from the eye, for 30–60 seconds. The laser device in question had a maximum power rating of 5 mW at a wavelength of 670 nm. Although the subject maintained 20/20 vision with a normal Amsler chart, he exhibited a focal disturbance of the retinal pigment epithelium in the left nasal macula deficiency of his central scotoma. This right eye of this 34 year old was entirely healthy on intraocular fluorescein angio-
While transient exposure is unlikely to cause macular damage, this case
classifications varied between codes of prac-
to give guidance to casualty and medical person-
the potential for laser damage if these items were used inappropriately.

A recent article by Luttrull and Hallisey is therefore of significant importance to any ophthalmologist dealing with clinical cases relating to laser pen exposure. In this reported case, a 34 year old Hispanic male who was reviewed 2 days after deliberately staring into the beam of a class 3A (USA) laser pointer, held 8–10 inches from the eye, for 30–60 seconds. The laser device in question had a maximum power rating of 5 mW at a wavelength of 670 nm. Although the subject maintained 20/20 vision with a normal Amsler chart, he exhibited a focal disturbance of the retinal pigment epithelium in the left nasal macula deficiency of his central scotoma. This right eye of this 34 year old was entirely healthy on intraocular fluorescein angio-
While transient exposure is unlikely to cause macular damage, this case
classifications varied between codes of prac-
to give guidance to casualty and medical person-
the potential for laser damage if these items were used inappropriately.

A recent article by Luttrull and Hallisey is therefore of significant importance to any ophthalmologist dealing with clinical cases relating to laser pen exposure. In this reported case, a 34 year old Hispanic male who was reviewed 2 days after deliberately staring into the beam of a class 3A (USA) laser pointer, held 8–10 inches from the eye, for 30–60 seconds. The laser device in question had a maximum power rating of 5 mW at a wavelength of 670 nm. Although the subject maintained 20/20 vision with a normal Amsler chart, he exhibited a focal disturbance of the retinal pigment epithelium in the left nasal macula deficiency of his central scotoma. This right eye of this 34 year old was entirely healthy on intraocular fluorescein angio-
While transient exposure is unlikely to cause macular damage, this case
classifications varied between codes of prac-
to give guidance to casualty and medical person-
the potential for laser damage if these items were used inappropriately.
Residents’ Foreign Exchange Programme

Any resident interested in spending a period of up to one month in departments of ophthalmology in the Netherlands, Finland, Ireland, Germany, Denmark, France, Austria, or Portugal should apply to: Mr Robert Acheson, Secretary of the Foreign Exchange Committee, European Board of Ophthalmology, Institute of Ophthalmology, University College Dublin, 60 Eccles Street, Dublin 7, Ireland.

16th Congress of the International Society for Geographical and Epidemiological Ophthalmology (ISGEO)

The 16th Congress of the ISGEO will be held at the Institut D’Ophthalmologie Tropicale De L’Afrique (IOTA) in Bamako, Mali on 21–22 February 2000. Further details: Dr Paul Courttrigth, ISGEO Secretary, BC Centre for Epidemic & International Ophthalmology, University of British Columbia, St Paul’s Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada (email: pcourttright@stpaulshosp.bc.ca; website: www.interchange.ubc.ca/bceio/isgeo).

Office of Continuing Medical Education

The Baylor College of Medicine, Cullen Eye Institute, Department of Ophthalmology is presenting a course entitled “The Cullen course 2000—clinical advances in ophthalmology for the practising ophthalmologist” at the Houstonian Hotel and Conference Center, 111 North Post Oak Road, Houston, Texas from 3–5 March 2000. Further details: Carol J Sorkora, Conference Coordinator, Office of Continuing Medical Education, Baylor College of Medicine, One Baylor Plaza, St 104, Houston, TX 77030, USA. (Tel: 713 798-5600.)

Leonard Klein Foundation

The Leonard Klein Foundation in the Donors’ Association for the Promotion of Sciences and Humanities in Germany is to bestow the Leonard Klein Award 2000 of DM 30 000 for innovative work in the development and application of microsurgical instruments and microsurgical operating techniques. Deadline for applications is 31 March 2000. Further details: Stifterverband fur die Deutsche Wissenschaft e V, Herrn Peter Beck, Postfach 16 44 60, D-45224 Essen, Germany.

American Institute of Ultrasound in Medicine

The American Institute of Ultrasound in Medicine will hold the 44th annual convention in San Francisco, California on 2–5 April 2000. Further details: AIUM Professional Development Department, 14750 Sweitzer Lane, Suite 100, Laurel, MD 20707-5906 (tel: 800-638-5535; fax: 301-498-4100; email: con edu.aium.org; website: www.aium.org).

XXII Tuebingen Detachment Course

The XXII Tuebingen Detachment Course, retinal and vitreous surgery, will be held in the congress centre Incheba, Bratislava, Slovak Republic 6–7 April 2000 preceding the congress on retinal detachment of the Slovak Ophthalmological Society 8–9 April 2000. Further details: Professor Peter Strmen 81369 Bratislava, Mickeviciuzova 13 (tel/fax: 00421-7-52964641; email: strmen@faneba.sk).

VIIth Mediterranean Ophthalmological Society

The combined meeting of the VIIth Mediterranean Ophthalmological Society and the VIIth Michaelson Symposium on Ocular Circulation and Neovascularisation will be held in Jerusalem on 21–26 May 2000. Further details: Secretariat, c/o Unitours Israel Ltd, PO Box 3190, 61031 Tel Avivos, Israel (tel: +972-3-5239099; email: meetings@unitours.co.il).

The VIIth Michaelson medal and award will be delivered on 24 May 2000 in Jerusalem. The medal and award (S$15 000 monetary prize) are sponsored by the Israel Academy of Sciences and Humanities and by the Hadasah Hebrew University Hospital and Medical School of Jerusalem, Israel. Nominations are sought from the ophthalmic community at large. Suggestions and reasons for choice and CV highlights should be sent to Professor David BenEzra, Secretary for the International Nominating Committee, Pediatric Ophthalmology Unit, Hadassah Hebrew University Hospital, PO Box 12000, Jerusalem 91120, Israel.

5th International Vitreoretinal Meeting–IIV 2000

The 5th International Vitreoretinal Meeting–IIV 2000 will be held in Parma, Italy, on 26–27 May 2000. The main topics will include “Hypotony and glaucoma in vitreoretinal surgery”, “Internal limiting membrane surgery”, “Macula oedema”, “Open globe injuries”, and “News in retinal pigment epithelium”. Further details: Dr Michele Zangari, MA De Giovanni, or S Tedesco, Scientific Secretary, Institute of Ophthalmology, University of Parma, Via Gramsci 14, 43100 Parma, Italy (tel: +39 0521 295106; fax: +39 0521 292358; email: nuZZI@ipruniv.cce.unipr.it).

International Strabismological Association

The International Strabismological Association (ISA) has established fellowships for training in strabismus and paediatric ophthalmology, supported by $US 10 000 each. Further details: Secretary/Treasurer ISA, Derek T Sprunger, MD, Indiana University School of Medicine, 702 Rotary Circle, Indianapolis, Indiana 46202-5175, USA. The last day of application is 15 June 2000 (tel: 317 274-1214; fax: 317 274-1111).

XXIV Nordic Congress of Ophthalmology

The XXXIV Nordic Congress of Ophthalmology will be held in Reykjavik, Iceland, 18–21 June 2000. This meeting celebrates the 100 year anniversary of the Nordic Ophthalmology Conference. Further details: Iceland Incentives Inc, Hamarborg 1–3, Is-Kopavogur, Iceland (tel: +354 554 1400; fax: +354 554 1472; email: incentiv@nmt.is).

13th Annual Meeting of German Ophthalmic Surgeons

The 13th annual meeting of German Ophthalmic Surgeons will be held on 15–18 June 2000 at the Meistersingerhalle, Nuremberg, Germany. Further details: MCN Medizinische Congress-organisation Nürnberg AG, Zerzabelhofstrasse 29, D-90478 Nuremberg, Germany (tel: +49-911-3931621; fax +49-911-3931620; email: dorchfinger@mcn-nuernberg.de).

Joachim Kuhlmann Fellowship for Ophthalmologists 2000

The Joachim Kuhlmann AIDS Foundation, Essen, Germany, is sponsoring two fellowships per year for ophthalmologists at a well known institute, who want to train in CMV retinitis and other HIV related ophthalmological diseases. The fellowships are valued at US5000 each. Deadline for application is 31 July. Detailed applications, including CV and publication list, should be sent to the Joachim Kuhlmann AIDS Foundation, Bismarkstrasse 55, 45128 Essen, Germany (tel: 0201 87910-87; fax: 0201 87910-99; email: jkfistung@t-online.de).

DR-2000, International Forum on Diabetic Retinopathy

The International Forum on Diabetic Retinopathy will take place on 7–9 September 2000 at the Palazzo Reale, Naples, Italy. Further details: Francesco Bandello, Congress Secretariat, MGR Congressi, Via Servito Tullio, 4, 20123 Milano, Italy (tel: 39 02 430071; fax: 39 02 48008471; email: dr2000@mgr.it).

13th Afro-Asian Congress of Ophthalmology

The 12th Afro-Asian Congress of Ophthalmology (Official Congress for the Afro-Asian Council of Ophthalmology) will be held on 11–15 November 2000 in Guangzhou (Canton), China. The theme is “Advances of ophthalmology and the 21st century”. Further details: Professor Lezheng Wu, Zhongshan Eye Center, SUMS, New Building, Room 919, 54 Xianlie Nan Road, Guangzhou 510060, PR China (tel: +86-20-8760 2402; fax: +86-20-8777 3570; email: lwuics@gzsums.edu.cn).

Singapore National Eye Centre 10th Anniversary International Congress

The Singapore National Eye Centre 10th Anniversary International Congress will be held in conjunction with 3rd World Eye Surgeons Society International Meeting on 2–4 December 2000 at the Shangri-La Hotel, Singapore. Further details: The Organising Secretariat, 11th Third Hospital Avenue, Singapore 168751 (tel: (65) 2277255; fax: (65) 2277290; internet: www.snee.com.sg).

The Hong Kong Ophthalmological Symposium 00

The Hong Kong Ophthalmological Symposium 00 will be held 4–5 December 2000, in Hong Kong, China. Further information: Miss Vicki Wong, Room 802, 8/F Hong Kong Academy of Medicine, 99 Wong Chuk Hang Road, Aberdeen, Hong Kong (tel: (852) 2761 9128; fax: (852) 2761 0089; email: colk@netvigator.com).
Diagnosis of external ocular infections: microbiological processing and interpretation

SAVITRI SHARMA

Br J Ophthalmol 2000 84: 229
doi: 10.1136/bjo.84.2.229

Updated information and services can be found at:
http://bjo.bmj.com/content/84/2/229.1

These include:

References

This article cites 2 articles, 1 of which you can access for free at:
http://bjo.bmj.com/content/84/2/229.1#BIBL

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/