Effect of spectacles on changes of spherical hypermetropia in infants who did, and did not, have strabismus

R M Ingram, L E Gill, T W Lambert

Abstract

Aim—To explore why emmetropisation fails in children who have strabismus.

Methods—289 hypermetropic infants were randomly allocated spectacles and followed. Changes in spherical hypermetropia were compared in those who had strabismus and those who did not. The effect of wearing glasses on these changes was assessed using t tests and regression analysis.

Results—Mean spherical hypermetropia decreased in both eyes of “normal” children (p<0.001). The consistent wearing of glasses impeded this process in both eyes (p<0.007). In the children with strabismus, there were no significant changes in either eye, irrespective of treatment (p>0.05).

Conclusions—In contrast with normal infants, neither eye of those who had strabismus emmetropised, irrespective of whether the incoming vision was clear or blurred. It is suggested that these eyes did not “recognise” the signal of blurred vision, and that they remained long sighted because they were destined to squint. Hence, the children did not squint because they were long sighted, and glasses did not prevent them squinting. (Br J Ophthalmol 2000;84:324–326)

Table 1 Effect of spectacles on changes in spherical hypermetropia in normal children and those with strabismus

<table>
<thead>
<tr>
<th>Group</th>
<th>No</th>
<th>Fixing eyes</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Start</td>
<td>Mean</td>
<td>SE</td>
<td>End</td>
<td>Mean</td>
<td>SE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>SE</td>
<td>Mean</td>
<td>SE</td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>189</td>
<td>+4.57</td>
<td>0.07</td>
<td>+3.33</td>
<td>0.08</td>
<td>−1.24</td>
<td>0.09</td>
</tr>
<tr>
<td>T0</td>
<td>89</td>
<td>+4.47</td>
<td>0.11</td>
<td>+3.13</td>
<td>0.08</td>
<td>−1.34</td>
<td>0.13</td>
</tr>
<tr>
<td>T+/-</td>
<td>55</td>
<td>+4.60</td>
<td>0.10</td>
<td>+3.25</td>
<td>0.13</td>
<td>−1.35</td>
<td>0.15</td>
</tr>
<tr>
<td>T+</td>
<td>45</td>
<td>+4.74</td>
<td>0.15</td>
<td>+3.85</td>
<td>0.20</td>
<td>−0.89</td>
<td>0.18</td>
</tr>
<tr>
<td>Strabismus</td>
<td>100</td>
<td>+5.15</td>
<td>0.13</td>
<td>+4.87</td>
<td>0.16</td>
<td>−0.27</td>
<td>0.14</td>
</tr>
<tr>
<td>T0</td>
<td>53</td>
<td>+4.85</td>
<td>0.15</td>
<td>+4.69</td>
<td>0.21</td>
<td>−0.16</td>
<td>0.19</td>
</tr>
<tr>
<td>T+/-</td>
<td>25</td>
<td>+5.14</td>
<td>0.22</td>
<td>+4.76</td>
<td>0.29</td>
<td>−0.38</td>
<td>0.27</td>
</tr>
<tr>
<td>T+</td>
<td>22</td>
<td>+5.85</td>
<td>0.31</td>
<td>+5.43</td>
<td>0.42</td>
<td>−0.42</td>
<td>0.35</td>
</tr>
<tr>
<td>Total</td>
<td>289</td>
<td>+4.77</td>
<td>0.06</td>
<td>+3.87</td>
<td>0.09</td>
<td>−0.90</td>
<td>0.08</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group</th>
<th>No</th>
<th>Non-fixing eyes</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Start</td>
<td>Mean</td>
<td>SE</td>
<td>End</td>
<td>Mean</td>
<td>SE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>SE</td>
<td>Mean</td>
<td>SE</td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>189</td>
<td>+4.65</td>
<td>0.07</td>
<td>+3.51</td>
<td>0.08</td>
<td>−1.15</td>
<td>0.09</td>
</tr>
<tr>
<td>T0</td>
<td>89</td>
<td>+4.57</td>
<td>0.11</td>
<td>+3.33</td>
<td>0.09</td>
<td>−1.24</td>
<td>0.13</td>
</tr>
<tr>
<td>T+/-</td>
<td>55</td>
<td>+4.55</td>
<td>0.12</td>
<td>+3.42</td>
<td>0.14</td>
<td>−1.13</td>
<td>0.15</td>
</tr>
<tr>
<td>T+</td>
<td>45</td>
<td>+4.96</td>
<td>0.14</td>
<td>+3.97</td>
<td>0.21</td>
<td>−0.98</td>
<td>0.18</td>
</tr>
<tr>
<td>Strabismus</td>
<td>100</td>
<td>+5.37</td>
<td>0.12</td>
<td>+5.53</td>
<td>0.15</td>
<td>+0.16</td>
<td>0.13</td>
</tr>
<tr>
<td>T0</td>
<td>53</td>
<td>+5.08</td>
<td>0.16</td>
<td>+5.36</td>
<td>0.21</td>
<td>+0.28</td>
<td>0.18</td>
</tr>
<tr>
<td>T+/-</td>
<td>25</td>
<td>+5.36</td>
<td>0.22</td>
<td>+5.37</td>
<td>0.31</td>
<td>+0.01</td>
<td>0.28</td>
</tr>
<tr>
<td>T+</td>
<td>22</td>
<td>+6.07</td>
<td>0.28</td>
<td>+6.09</td>
<td>0.33</td>
<td>+0.02</td>
<td>0.26</td>
</tr>
<tr>
<td>Total</td>
<td>289</td>
<td>+4.90</td>
<td>0.07</td>
<td>+4.21</td>
<td>0.09</td>
<td>−0.70</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Sample and methods

In all, 615 (9.18%) of 6700 unselected 6 month old infants who attended for “screening” after instillation of cyclopentolate 1% had more than +5.25 D hypermetropia in at least one meridian. Approval was obtained for 372 (60.5%) of these to be randomly prescribed glasses (2.00 D less than the retinoscopy figure for each meridian) for constant wear. Those wearing glasses had non-cycloplegic cycloplegic refraction, because infants’ eyes naturally focus on the less hypermetropic meridian. Changes in astigmatism are considered separately (Ingram RM, Gill LE, Lambert TW. Reduction of astigmatism after infancy in children who did who did and did not have strabismus. In preparation).
to be wearing glasses consistently (T+, n=67) or not (T+/−, n=80). A total of 77 had a squint (five exotropia) diagnosed by the cover test and 23 a microtropia diagnosed by the 4 dioptre prism test. The mean initial astigmatism of the fixing eyes of those who had strabismus was significantly (p<0.001) less (0.31 D) than in those who did not, but there was no difference (p>0.50) in the non-fixing eyes.

All the refractions were done by RMI, and unaltered cycloplegic retinoscopy figures are quoted. The last retinoscopy was done when a squint was diagnosed (mean 37.99 (SD 11.67) months) or at 42+ months (mean 44.18 (7.21) months). Eyes of “normal” children were designated as “fixing” or “non-fixing” according to their vision or last refraction. If these were equal, they were randomly designated.

The clinical data were analysed using EPI-INFO and SPSS software, t tests, and multiple linear regression.

Results
Because of low numbers, the 23 children with microtropia were combined for analysis with the 73 who had squint, and are referred to as the “strabismus” group. Mean hypermetropia decreased significantly (p<0.001 using paired sample t tests) in both eyes of the normal group (see Table 1), but not in the strabismus group (p = 0.06 for fixing eyes, p = 0.24 for non-fixing eyes).

Each of the three treatment subgroups of the normal children showed a significant reduction (p<0.001) of the mean hypermetropia in both eyes, though the reduction was smaller in the T+ group (that is, those who consistently wore glasses). To explore this further, linear regression (see Fig 1) was used to relate the final value of hypermetropia (y) to its starting value (x), with differences in slope of the regression lines being used to compare responses to the three treatments—T0, no
metropia has been reported in association with blurred vision, and that both these defects of whether their vision was blurred, or cleared could “switch on” accommodation when it had previously not done so, and why did glasses, should have nullified any need for extra accommodation?18 Are these children any more or less prone to squinting? We suggest that the sequence of events is that (i) they remained long sighted because they were destined to have strabismus, and (ii) disparity/diplopia initially triggered convergence driven26 accommodation, which may then interact with accommodative vergence,37 permitting glasses to have some effect, but neither a curative nor a preventive one.

Discussion
There was a linear decrease of spherical hypermetropia in both eyes as these normal children grew (Fig 1), and this was impeded by the consistent wear of glasses (T+) by the normal children that was therefore associated with the maintenance of initial high levels of hypermetropia—that is, their emmetropisation was impeded.

In the children who had strabismus there was no significant change in the mean hypermetropia of either eye, both overall and in each treatment subgroup (all p>0.05).

Effect of spectacles on changes of spherical hypermetropia in infants who did, and did not, have strabismus

R M Ingram, L E Gill and T W Lambert

Br J Ophthalmol 2000 84: 324-326
doi: 10.1136/bjo.84.3.324

Updated information and services can be found at:
http://bjo.bmj.com/content/84/3/324

These include:

References
This article cites 18 articles, 6 of which you can access for free at:
http://bjo.bmj.com/content/84/3/324#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

Muscles (254)
Neurology (1355)
Optic nerve (713)
Optics and refraction (508)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/