LETTERS TO
THE EDITOR

Thyroid eye disease associated with athyria

EDITOR.—The pathogenesis of thyroid eye disease is believed to derive from fibroblast stimulation by cytokines released by activated T lymphocytes. There is evidence of abnormal cell mediated autoimmunity and humoral autoimmunity resulting in infiltration of lymphocytes and adipocytes into the extraocular muscles.1 The success of therapeutic immunosuppressants (steroids/azathioprine/radiotherapy) strengthens this hypothesis. A single definitive cross reacting (thyroid/retro-orbital) autoantibody has not been identified. Zhang et al found that sera from 50% of patients with thyroid eye disease reacted with an eye muscle specific protein of 55 kDa relative molecular weight.2 Pittsburgh data showed 67% patients with active Graves’ ophthalmopathy have antibodies against a 67 kDs mitochondrial flavoprotein subunit although it has been subsequently found in 20% of controls.3 They also identified a 220 kDa cell membrane specific protein known as GZS specific to eye muscle and thyroid tissue, but antibodies to this have been demonstrated in both thyroid eye disease patients and normal people.4 No autoantibody has been demonstrated in every case and all lack specificity. Our case demonstrates that whatever the autoimmune process may be, the presence of normal thyroid tissue or autoimmune disease affected thyroid is not essential at the time of onset and development of clinical disease.

CASE REPORT
At age 30, this woman underwent partial thyroidectomy for papillary thyroid cancer. At 36 years she underwent radioactive ablation (2.2 GBq iodine-131) of the residue for suspected recurrence. At this time there was no evidence of orbital disease. At 70 years, she presented with 6 months’ diplopia and “puffy, gritty” eyes. She was clinically euthyroid on thyroxine, with bilateral proptosis (worse on the left) with conjunctival congestion, periorbital oedema, a divergent strabismus (Fig 1) and limitation of upward gaze. A clinical diagnosis of thyroid eye disease was made, which was confirmed by orbital computed tomography (Fig 2).

Both her sister and paternal grandmother had goitres without thyroid eye disease. Her sister had thyroid microsomal antibodies.

INVESTIGATIONS
Normal triiodothyronine 1.44 nmol/l (range 1.2–2.2), mildly elevated thyroxine (174 nmol/l, normal range 58–140)–in an attempt to suppress the thyroid stimulating hormone (0.9 mU/l, normal range 0.3–4.0). A technetium-99m uptake scan showed no thyroid remnant. An iodine-123 tracer scan showed borderline evidence of uptake in the thyroid bed but avid uptake in the lower thoracic spine suggesting residual thyroid cancer with a vertebral metastasis. Her serum thyroglobulin was elevated at 28 ng/ml (normal range <1 in athyria) but there were no antithyroglobulin antibodies. Thyroid stimulating hormone antibodies were negative, as were her thyroglobulin antibodies and thyroid microsomal antibodies. All human and porcine retrobulbar autoantigens were negative including the aforementioned 55, 67, and 220 kDa protein antibodies despite the presence of metastatic thyroid tissue. Her general autoantibody profile was negative for antinuclear antibodies, gastric parietal cell, smooth muscle, liver/kidney microsomal, mitochondrial and reticulolin. The RA latex was weakly positive and the Rose-Waaler was <1:32.

Her thyroid eye disease was treated with radiotherapy to good effect. Her asymptomatic metastatic thyroid cancer is being treated with radioiodine.

COMMENT
This woman, with a family history of thyroid disease and whose sister has thyroid autoantibodies, has developed thyroid eye disease while possessing no significant normal thyroid tissue for 36 years. She was negative for the full array of routine and experimental thyroid autoantibodies and no other autoimmune disease were demonstrable.

If a humoral mechanism is relevant, then there are several possible explanations; firstly, the autoimmune process in this patient is not related to autoantibodies but is linked to humoral autoantibodies against a 67 kDa mitochondrial flavoprotein subunit. Secondly, this hypothesis is relevant to the understanding of the aetiology of thyroid eye disease in so far as the disease occurred in the presence of differentiated thyroid cancer but in the absence of any normal thyroid tissue or thyroid currently or previously affected by thyroid disease (and absence of any detectable amounts of the panoply of currently measurable serum autoantibodies)—this dissociation has not hitherto been recognised.

P B ROGERS
N GUPTA
Department of Radiotherapy, St Bartholomew’s Hospital, London EC1V 7BE

G E ROSE
Moordfield’s Eye Hospital, City Road, London EC1V 2PD

P N PLOWMAN
Department of Radiotherapy, St Bartholomew’s Hospital, London EC1A 7BE

Correspondence to: Dr P N Plowman
Accepted for publication 8 November 1999

3 Kubota S, Gunji K, Ackrell BAC, et al. The 64 kilodalton eye muscle protein is the flavoprotein subunit of mitochondrial succinate dehydrogenase: the corresponding serum autoantibodies are good markers of an immune mediated damage to the eye muscle in patients with Graves’ hyperthyroidism. J Clin Endocrinol Metab 1996;8:442–7.

Leber’s hereditary optic neuropathy and maturity onset diabetes mellitus: is there a metabolic association?

EDITOR.—Leber’s hereditary optic neuropathy (LHON) is a maternally inherited mitochondrial disease that results in bilateral visual loss. It primarily affects young men. The typical optic nerve head appearance is one of circum-papillary telangiectatic microangiopathy, swelling of the nerve fibre layer around the optic disc, and the absence of capillary leakage on fluorescein angiography.1

The mitochondrial inheritance of the disease was confirmed in 1988 by Wallace et al who identified a mitochondrial DNA replace-

Figure 1 Frontal photograph of patient demonstrating the typical clinical features of thyroid eye disease. Proptosis, lid retraction, chemosis, and ophthalmoparesis are obvious.

Figure 2 Coronal computed tomogram of orbits demonstrating typical hypertrophiocular muscles, more marked on the left, the more proptotic eye (Fig 1).
ment mutation at nucleotide position 11778. Further mutations have been identified at positions 3460, 14484, and 15257. The 11778 mutation is responsible for 31–89% of LHON pedigrees in Europe, North America, and Australia, while the 3460 and 14484 mutations each account for approximately 10–15% of cases. The discovery of the molecular basis of LHON has provided insights into the heterogeneous clinical spectrum of this disease that may result. Although the causal mutations are established, the pathophysiology of the optic nerve damage is not known. The relation between metabolic dysfunction, such as diabetes mellitus, and the development of Leber’s hereditary optic neuropathy has been described only rarely. Du Bois and Feldon described a case of a 9 year old girl with juvenile onset diabetes mellitus and LHON whose vision recovered once the diabetes was well controlled. In their series of 49 Leber’s pedigrees, Newman et al described the case of another 9 year old girl with visual loss due to LHON in the setting of 6 months of unrecognised diabetes mellitus. They suggested that diabetes mellitus may have placed undue stress on mitochondrial function.

The following case report suggests a relation between the development of non-insulin diabetes mellitus and LHON in an adult patient and the expression of Leber’s hereditary optic neuropathy.

CASE REPORT

In February 1998, a previously healthy 50 year old man presented with a 5 week history of progressive deterioration of vision in both eyes. He had recently been diagnosed with non-insulin dependent diabetes mellitus. No family history of visual disturbance was elicited. At the time of presentation, his best corrected visual acuities were counting fingers (CF) right and near normal within 6–12 months. of the 11778 mutation. Arch Ophthalmol 1993;111:495–8.

Free conjunctival autograft harvested from the fornix for repair of leaking blebs

EDITOR,—In a previously reported technique of free conjunctival autograft for the repair of leaking blebs, the distance from the limbus to the harvesting site was not specified. In these reports, the limbal conjunctiva were incised, or the fornix was excised, which may allow future filtration surgery difficult at that site. We believe that even in the contralateral eye or the inferior quadrant of the same eye, paralimbal conjunctiva are sites for potential future filtration surgery in most cases. Buxton et al stated that grafts should not be taken from the fornix because this can induce foreshortening and lid malposition if both palpebral and bulbar conjunctiva are excised. We found that grafts can be harvested from the fornix with no complications, thus preserving the potential filtration sites.

CASE REPORTS

In six eyes of four patients, we repaired persistent leaking blebs after trabeculectomy by transplanting free conjunctival autografts harvested from the fornix. Grafts were harvested from the fornix side of the leaking blebs when possible. When the intact conjunctiva of the fornix side of a leaking bleb was very narrow, the graft was harvested from the other quadrant, 5–6 mm away from the limbus. The procedure followed the previously reported technique, except for the site from which the graft was harvested. The aqueous leaks were repaired successfully, and filtering function was maintained in all cases. Two eyes of two patients required β blocker treatment to maintain satisfactory intraocular pressure after the repair surgery. Over an average follow up of 9 months (range 6–12 months), none of the eyes had significant complications including either adhesion between palpebral and bulbar conjunctiva or lid malposition. The case series are described in Table 1.

Table 1 Clinical characteristics of the case series

<table>
<thead>
<tr>
<th>No</th>
<th>Sex</th>
<th>Age (years)</th>
<th>Eye</th>
<th>Indication for LEC</th>
<th>LEC to repairing</th>
<th>Site for LEC</th>
<th>Harvested site</th>
<th>Graft size (DB/DH)</th>
<th>Follow up (months)</th>
<th>Last IOP (mm Hg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>55</td>
<td>R</td>
<td>POAG</td>
<td>10 days</td>
<td>upper</td>
<td>upper</td>
<td>6–5</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>64</td>
<td>L</td>
<td>POAG</td>
<td>4 years</td>
<td>upper</td>
<td>upper</td>
<td>6–5</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>65</td>
<td>R</td>
<td>POAG</td>
<td>4 years</td>
<td>upper</td>
<td>upper</td>
<td>6–5</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>63</td>
<td>L</td>
<td>secondary POAG</td>
<td>4 years</td>
<td>upper</td>
<td>upper</td>
<td>6–5</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

LEC = trabeculectomy, POAG = primary open angle glaucoma, DP = diameter parallel to the limbus, DV = diameter vertical to the limbus, IOP = intraocular pressure.

*β blocker treatment.

Letters
COMMENT

We believe that the optimal site for harvesting conjunctival autografts is the fornix side of the leaking bleb, because it has almost no potential as a future filtration site. The paralimbal conjunctiva of the contralateral eye is often a potential future filtration site, since glaucoma is often bilateral. Even with a diagnosis of "unilateral glaucoma" at the time of bleb reconstruction, the potential for development of glaucoma in the contralateral eye cannot be completely excluded. A persistent bleb leak that requires total reconstruction is frequently encountered. The potential for development of glaucoma is often bilateral. Even with a diagnosis of "unilateral glaucoma," the potential for development of glaucoma in the contralateral eye cannot be completely excluded. A persistent bleb leak that requires total reconstruction is frequently encountered in eyes that have undergone multiple procedures and treatment with adjunctive antimetabolites.1,7 These situations are mostly encountered in eyes with refractory glaucoma, which often have little intact paralimbal conjunctiva remaining but have a high potential for multiple filtration surgeries. We believe that intact conjunctiva within 5 mm from the limbus is needed to perform a successful filtration surgery. The reported distances of the conjunctival fornix from the limbus are as follows: upper, 8–10 mm; temporal, 14 mm; lower, 8–10 mm; nasal, 7 mm. These data indicate that conjunctiva may be taken from the upper or lower quadrant, and is most easily taken from the temporal quadrant when harvesting a graft 5 mm away from the limbus. No special attention was required to avoid excising the palpebral conjunctiva during this procedure. Excising the palpebral conjunctiva may be technically difficult during this procedure. We conclude that harvesting a graft from the fornix should be considered when reconstruction surgery is performed with free conjunctival autografts for leaking blebs.

DAISUKE MIYAZAWA
TAKEHISA KONDO
Department of Ophthalmology, Kobe City General Hospital, 4-6 Minatojima-naka, Kobe 650-0046, Japan

Correspondence to: Daisuke Miyazawa, MD, Department of Ophthalmology, Kobe City General Hospital, 4-6 Minatojima-naka, Kobe 650-0046, Japan Accepted for publication 8 December 1999

Five cases of thelaziasis

EDITOR—We report five cases of thelaziasis, including a rare case of infection of a hospital inpatient. Thelaziasis is a nematode infection of ocular tissue that is caused by Thelazia callipaeda, which is found in China, India, Thailand, Korea, and Japan. This parasite has been identified in the conjunctival sac, and lacrimal gland and canal of dogs, cats, cows, badgers, rabbits, foxes, and monkeys in Asia.1 Thelaziasis results when flies ingest embryonated eggs in the ocular tissue of an infected host; the eggs develop into larvae and are deposited onto the conjunctiva of a new host. Drosophila—namely, Amoto okada, A magna, and A nagatai—are the intermediate hosts.2,3 To our knowledge, with the exception of Japan 157 cases have been reported worldwide (China, 124; Korea, 24; Thailand, 5; India, 2; Russia and Indonesia, 1 each).1 In Japan, approximately 100 cases have been reported, mostly in the western regions, especially in Kyushu (66 cases).2,4 To date, there have been no reported cases of inpatient infections.

CASE REPORTS

The clinical features of the five patients are summarised in Table 1. Patients (three men, two women; ages, 57–83 years) were examined at Muikaiti Hospital and Tuwanokouzou Hospital from 1989 to 1999. Patients 1, 2, 3, 4, and 5 were outpatients, but patient 5 was an inpatient who had been hospitalised for more than a year. There were no other cases in the same hospital ward or infection of medical personnel. All patients were infected unilaterally (three right eyes, two left eyes). The patients’ subjective symptoms were foreign body sensation, visual disorder, and ocular pain. Patient 5 had senile dementia and her symptoms are unknown. Clinical findings were conjunctival congestion, follicles, and whitish worms in the conjunctivitis. Patients did not report having had flies in their eyes, but do keep animals such as dogs, cats, and cows. They had never visited the Kyushu region of Japan. The worms were removed (two to five worms per patient) with forceps using topical anaesthesia and antibiotic eye drops (Fig 1). The patients’ symptoms resolved and there were no recurrences. The presence of the Thelazia callipaeda worms was confirmed by parasitologists.

Figure 1 Patient 5. Slight conjunctival congestion and a worm in the right conjunctival sac.

Table 1 Details of five cases of thelaziasis

<table>
<thead>
<tr>
<th>Patient No</th>
<th>Sex</th>
<th>Age (years)</th>
<th>Year examined</th>
<th>Infected eye</th>
<th>No of worms</th>
<th>Symptoms and ocular pain</th>
<th>Clinical findings and follicles</th>
<th>History</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Male</td>
<td>65</td>
<td>1995</td>
<td>Left</td>
<td>3</td>
<td>Foreign body sensation</td>
<td>Conjunctival congestion</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>Male</td>
<td>83</td>
<td>1996</td>
<td>Right</td>
<td>3</td>
<td>Foreign body sensation</td>
<td>Conjunctival congestion</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>Male</td>
<td>65</td>
<td>1995</td>
<td>Right</td>
<td>3</td>
<td>Foreign body sensation</td>
<td>Conjunctival congestion</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>Female</td>
<td>57</td>
<td>1998</td>
<td>Left</td>
<td>3</td>
<td>Foreign body sensation</td>
<td>Conjunctival congestion</td>
<td>—</td>
</tr>
<tr>
<td>5</td>
<td>Female</td>
<td>80</td>
<td>1999</td>
<td>Right</td>
<td>3</td>
<td>Foreign body sensation</td>
<td>Conjunctival congestion</td>
<td>—</td>
</tr>
</tbody>
</table>

The authors have no proprietary interest in any aspect of this report.

YASUROU KOYAMA
Division of Ophthalmology, Musashino Hospital, Musashino, Japan

AKIHIRO OHIRA
Department of Ophthalmology, Shimane Medical University, Izumo, Shimane, Japan

TATSURO KONO
Division of Ophthalmology, Tuwanokouzou Hospital, Tuwanokouzou, Shimane, Japan

TOSHIMI YONIYAMA KUNINORI SHIHWU
Department of 2nd Environment Medicine, Shimane Medical University, Izumo, Shimane, Japan

Correspondence to: Dr Akihiro Ohira. Department of Ophthalmology, Shimane Medical University, 89-1, Enya, Izumo, Shimane, 693-8501, Japan Accepted for publication 8 December 1999

Fish hook injury of the eyelid: an unusual case

EDITOR—Reports of ocular fish hook injuries are uncommon in the literature. In the context of a recent case report by Krott and co-authors,1 I would like to add my experience with a rather unusual case of fish hook injury to the eye.

A 44 year old man presented to the casualty department with a fish hook embedded in his...
left upper eyelid. He had cut off the line but made no attempt to remove the hook. The fish hook had pierced the eyelid from its conjunctival aspect near the outer canthus. It was loaded with nine live maggots that were used as bait (Fig 1). The left eye showed a small superficial linear abrasion of the cornea but was otherwise unremarkable and the visual acuity was 6/6. Under local anaesthesia after removal of the maggots, the hook was rotated so that the barb emerged through the eyelid skin. The barb was snipped off using a wire cutter and the hook was rotated back and removed. The patient was treated with saline irrigation of the conjunctival sac and a topical antibiotic and he made an uneventful recovery.

Even in the absence of serious ocular injury, this case is interesting for the presence on the fish hook of live maggots that were kissing the sac and a topical antibiotic and he made an uneventful recovery.

Methaemoglobinaemia after peribulbar blockade: an unusual complication in ophthalmic surgery

EDITOR.—Peribulbar blockade is frequently used for anaesthesia in ophthalmic surgery. Owing to its short onset time and low incidence of cardiac and central nervous system toxicity, the local anaesthetic prilocaine is a popular choice for peribulbar blockade. Prilocaine is, however, the most potent methaemoglobin forming local anaesthetic. Its use for peribulbar blockade in patients with reduced tolerance to oxidant drugs may have predisposed this patient to develop methaemoglobinaemia.

In conclusion, small concentrations of prilocaine can cause methaemoglobinaemia when used for peribulbar blockade in patients with reduced tolerance to oxidant drugs.

HOLGER EITZSCHIG MARTIN ROHRBACH TORSVEN HANS SCHROEDER Department of Anaesthesiology and Department of Ophthalmology, Eberhard-Karls-University Tuebingen, Germany

Correspondence to: Torsven H Schroeder, MD, Channing Laboratory, Brigham and Women’s Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA

Accepted for publication 8 December 1999

Five cases of thelaziasis

YASUROU KOYAMA, AKIHIRO OHIRA, TATSURO KONO, TOSHIMITO YONEYAMA and KUNINORI SHIWAKU

Br J Ophthalmol 2000 84: 439
doi: 10.1136/bjo.84.4.439c

Updated information and services can be found at:
http://bjo.bmj.com/content/84/4/439.4

These include:

References
This article cites 2 articles, 0 of which you can access for free at:
http://bjo.bmj.com/content/84/4/439.4#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/