LETTERS TO THE EDITOR

Bilateral cavernous haemangiomas of the orbit

EDITOR,—The great majority of orbital tumours are unilateral. However, some conditions, such as idiopathic orbital inflammation (“pseudotumour”), granulomatous inflammation, lymphoid tumours, or metastases sometimes can be bilateral. Orbital cavernous haemangioma is almost always unilateral. We report a patient with bilateral orbital cavernous haemangiomas that caused unilateral proptosis and visual distortion.

CASE REPORT
A 37 year old man developed distorted vision in the inferior field of his left eye and was found to have mild left proptosis. There was mild swelling of the left optic disc and a small inferonasal visual field defect. Orbital computed tomography (CT) revealed bilateral orbital masses and the patient was referred to the oncology service for another opinion and management. His visual acuity was 6/6 in each eye and colour vision was normal in both eyes. The only positive findings were 3 mm of left proptosis, mild swelling of the left optic disc, and a subtle inferonasal field defect. The orbital CT showed a round, soft tissue mass in the inferior field of his left eye and was computed tomography (CT) revealed bilateral orbital masses, separated by fibrous stroma, consistent with cavernous haemangioma (Fig 1). The patient had an unremarkable postoperative course with good visual acuity.

COMMENT
Cavernous haemangioma of the orbit is a common, benign tumour that almost always occurs unilaterally. There are rare reports of bilateral orbital cavernous haemangiomas. Fries and Char reported a case that was very similar to ours. They excised the tumour in one orbit and elected to follow the asymptomatic tumour in the opposite orbit. Sullivan and associates reported an unusual case of multiple bilateral orbital haemangiomas. Johnson and co-workers reported bilateral orbital haemangiomas as part of Maffucci’s syndrome, a condition characterised by enchondromatosis and multiple systemic haemangiomas. Our patient was otherwise normal with no evidence of Maffucci’s syndrome. There was also a recent report of bilateral orbital vascular masses, presumed orbital varices, that caused intravascular papillary endothelial hyperplasia. The widespread use of CT and magnetic resonance imaging to evaluate unrelated problems, such as headache, has led to the recognition of asymptomatic lesions compatible with orbital cavernous haemangioma. We have seen several cases and have elected to follow without treatment these small, asymptomatic tumours, presumed to be bilateral cavernous haemangiomas. Consequently, it is possible that orbital cavernous haemangioma may be more common than previously believed. If so, additional cases of bilateral orbital cavernous haemangioma will probably be recognised. In our case, the asymptomatic tumour in the right orbit most likely is a cavernous haemangioma, but periodic observation, rather than surgical excision, would seem to be the best management. In summary, the ophthalmologist should include orbital cavernous haemangioma in the differential diagnosis of bilateral, as well as unilateral, orbital tumours.

JERRY A SHIELDS
Oncology Service, Wills Eye Hospital, 900 Walnut Street, Philadelphia, PA 19107, USA

R NICK HOGAN
Wills Eye Hospital, Thomas Jefferson University, Philadelphia, PA and the Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, USA

CAROL L SHIELDS
Oncology Service

RALPH C EAGLE, JR
Department of Pathology

ROBERT H KENNEDY
Wills Eye Hospital, Thomas Jefferson University, Philadelphia, PA and the Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, USA

ARUN D SINGH
Oncology Service

Correspondence to: Dr Jerry A Shields
Accepted for publication 7 March 2000

Choroidal neovascularisation at a demarcation line: an immunopathological study

EDITOR,—We describe a patient presenting with a choroidal neovascular membrane (CNVM) at the demarcation line of a longstanding rhegmatogenous retinal detachment (RRD), and characterise its immunopathological features following surgical removal.

CASE REPORT
A 46 year old myopic woman attended the vitreoretinal service with a 3 month history of a shadow in the superior half of her left visual field. Her visual acuity was 6/9 right and 6/12 left, with a refractive error of −13.0D and −9.50D effective spheres respectively.

Examination of the left fundus revealed longstanding detached and thinned retina inferiorly and a broad heavily pigmented demarcation line passing through the macula with associated retinal pigment epithelial (RPE) hypertrophy. An area of paravascular retina adjacent to the tide mark appeared elevated and a fluorescein angiogram

Figure 1 Orbital computed tomograms with axial cut (A) and coronal cut (B), showing bilateral circumscribed orbital soft tissue masses, with a larger tumour in the left orbit and a small tumour in the right orbit.

Figure 2 Pathology. (A) Gross photograph of pseudocapsulated reddish blue mass. (B) Photomicrograph, showing large cavernous vascular channels typical of orbital cavernous haemangioma (haematoxylin and eosin ×100).
(FFA) revealed a juxtafoveal CNVM emerging from the edge of RPE hypertrophy. Three months later she reported decreased vision and metamorphopsia in her left eye, with a best corrected left visual acuity reduced to counting fingers. A subfoveal extension of the CNVM with bordering haemorrhage was present, confirmed by FFA (Fig 1A, B). She subsequently underwent pars plana vitrectomy, parafocal vitreoretinotomy, and removal of subfoveal CNVM, together with external scleral buckling, argon laser retinopexy, and 20% sulphur hexafluoride gas tamponade.

Postoperatively, an area of inferior retinal detachment persisted and further surgery with silicone oil tamponade was undertaken. Subsequently, a posterior subcapsular cataract developed and she underwent left phacoemulsification with intraocular lens implantation and removal of silicone oil. Postoperatively, visual acuity improved to 6/18 and the retina remained flat with no clinically apparent recurrence of the membrane. However, a posterior subcapsular cataract developed and she underwent left phacoemulsification with intraocular lens implantation and removal of silicone oil. Postoperatively, visual acuity improved to 6/18 and the retina remained flat with no clinically apparent recurrence of the membrane.

Histopathological examination revealed a CNVM consisting of numerous endothelial lined vascular channels and chronic inflammatory cells. The CNVM was lined by an incomplete layer of RPE cells on its posterior aspect, as determined by the clinical orientation of the membrane at the time of removal (Fig 2A). A large portion of the CNVM consisted of vascular channels lined by endothelial cells displaying immunoreactivity for von Willebrand antigens (Fig 2B). There was staining for VEGF (Fig 2C) and bFGF (Fig 2D) in the extracellular matrix, with a similar distribution of immunoreactivity.

COMMENT

Choroidal neovascularisation occurs in a wide spectrum of conditions, including degenerative, inflammatory, traumatic, and hereditary disorders—all characterised by breaks in Bruch’s membrane. A few cases of CNVM developing at the edge of a demarcation line have been reported in both chronic rhegmatogenous and tractional retinal detachments; however, the immunopathology does not appear to have been previously described.

A demarcation line (“high watermark”) is characteristically found in longstanding retinal detachments that either progress very slowly or remain static. In this setting, RPE cells may detach from Bruch’s membrane to proliferate and undergo metaplasia in the subretinal space at the junction of attached and detached retina. Clinically, a demarcation line appears as a line of increased pigmentation in this area and may form a sufficiently firm adhesion to prevent progression of a retinal detachment. The local wound healing response at the edge of the detached retina may also lead to excessive RPE proliferation. In our patient, such chorioretinal adhesion may have allowed the transmission of mechanical vitreo-retinal traction forces to Bruch’s membrane. This could potentially have compromised the integrity of Bruch’s membrane, allowing the formation of a CNVM. High myopia was a further predisposing factor for choroidal neo-vascularisation in this patient, making Bruch’s membrane more susceptible to disruption.

Grossniklaus and Gasch have described two fundamentally different types of choroidal neovascular growth patterns—type 1, with growth of new vessels beneath the retinal pigment epithelium, and type 2, with growth of new vessels in the sub-sensory retinal space. In our patient, the presence of RPE cells on the posterior surface of the CNVM indicates that it represented a type 2 membrane, as determined by its clinical orientation at the time of removal.

Experimentally detached retina in cats has been shown to possess higher angiogenic activity than normal attached retina. Indeed, peripheral retinal neovascularisation has been described in chronic rhegmatogenous retinal detachment. Retinal detachment is likely to lead to compromised metabolism and hypoxia of the outer retinal layers due to elevation of the retina from the choroid. RPE cells may

![Figure 1](image1.png)
Figure 1 (A) Colour fundus photograph showing pigment line, pigment epithelial hypertrophy, and bordering haemorrhage from subfoveal extension of choroidal neovascular membrane. (B) Fundus fluorescein angiogram demonstrating the subfoveal neovascular membrane. (C) Postoperative colour fundus photograph showing attached retina and no clinically visible recurrence of the membrane.

![Figure 2](image2.png)
Figure 2 Histopathology of excised choroidal neovascular membrane. (A) Photomicrograph showing a fibrovascular membrane lined on its posterior aspect by an incomplete row of RPE cells (haematoxylin and eosin ×80). Inset shows numerous macrophages staining for macrophage marker (PGM1 (PGM1 immunostain ×80). (B) Pcontrol region of membrane core is demonstrated by endothelial cells showing immunonegativity for von Willebrand stain (von Willebrand immunostain ×100). (C) Membrane showing focal immunostaining for VEGF (arrow) (VEGF immunostain ×80). (D) A similar distribution for bFGF is shown (bFGF immunostain ×80). Inset shows appropriate negative control with no specific staining.
secrete VEGF in response to this hypoxic insult and also secondary to mechanical stress incurred at the edge of the demarcation line. It may then stimulate the recruitment and activation of monocytes, which in turn could promote mediators of angiogenesis. It is therefore possible that the liberation of neovascular growth factors in this setting may have contributed further to the development of CNVM in our patient.

RHY Asaria is supported by the June Sutor Fellowship.

D N PARMAR
Moorfields Eye Hospital, London

R HY ASARIA
Moorfields Eye Hospital and Institute of Ophthalmology, London

P LUTHERT
Institute of Ophthalmology

D G CHARTERIS
Moorfields Eye Hospital and Institute of Ophthalmology

Correspondence to: Mr D G Charteris, Vitreoretinal Unit, Moorfields Eye Hospital, City Road, London EC1V 2PD

Accepted for publication 16 March 2000

Simultaneous metastases of cutaneous malignant melanoma to conjunctiva and choroid

EDITOR,—We report an unusual case of a cutaneous malignant melanoma which metastasised to the conjunctiva in one eye and the choroid in both eyes nearly 2 years after the initial presentation.

CASE REPORT

A 42 year old white man presented with a history of a small superficial black mark in the temporal aspect of the right eye, which had increased in size for the past 2 months. There was no significant ocular history. Two years earlier he had had a large malignant melanoma, 4.5 x 3.5 cm, removed from his lower back. On histopathology, this had been diagnosed as a superficial spreading type (Clarke’s level IV with Breslow thickness of 3.5 mm). The mitotic count was 5 per 10 high power field (HPF) with a sparse lymphocytic infiltrate seen at the edges. It had been excised completely with no vascular or lymphatic invasion seen in the section. He had been thoroughly screened and a computed tomography (CT) scan of the abdomen and head revealed widespread metastases. The patient was counselled and referred to the oncologist.

A diagnosis of cutaneous malignant melanoma with simultaneous metastases to the conjunctiva and choroid and possible widespread metastases was made. The patient was counselled and referred to the oncologist.
present with pain and redness due to secondary glaucoma caused by infiltration of the trabecular meshwork or angle closure due to an annular haemorrhagic choroidal detachment. Retinal deposits are very rare and may cause blurred vision. Differentiation between secondary metastases in the choroid and a primary melanoma is important in order to decide on the type of management. Bilateral diffuse uveal melanocytic proliferation is an important differential diagnosis in our patient but he had no associated cataract, retinal detachment, or severe visual impairment. The time interval between the initial presentation of the skin lesion and the occurrence of metastases may vary from months up to 10 years. The occurrence of uveal metastases usually indicates grave prognosis owing to widespread visceral disease, as was the case in our patient. He had undergone regular thorough screening for 2 years but no signs of metastases were found during this period. The first external sign of secondary disease was the presence of the conjunctival lesion, which led to the discovery of the intraocular metastases and secondary node involvement. Metastases to the conjunctiva from a cutaneous malignant melanoma is again very rare (less than 1%) and is usually associated with secondaries elsewhere in the eye. These lesions need to be differentiated from other conditions such as primary acquired melanosis, naevoid, adrenocortical tumors, direct extensions from ciliary body melanomas, and foreign body granulomas. The mode of treatment of metastatic cutaneous malignant melanin in the eye can range from local excision as in small localized iris tumors, and enucleation for a painful bland uveal melanoma or palliative treatment for concerning chemotheraphy and radiotherapy if the disease is widespread, as is often the case. Patients with a single choroidal metastasis may be considered for radioactive plaque treatment. Previous studies have shown a median survival rate of 72 days with a maximum survival of 183 days and less than 10% survive up to 8 months after the onset of ocular symptoms. Although the survival rates are partly related to the depth of the dermal invasion, ocular metastases with only superficial spreading type of melanomas have been reported and this was also true of our patient. Within days of being diagnosed with a cutaneous metastases, he developed signs of widespread secondaries, which led to his death within weeks.

SUSHMA DHAR-MUNSHI
Department of Ophthalmology, East Surrey Hospital, Redhill, Surrey, RH1 5RH

M AMEEN
Department of Histopathology

ROGER S WILSON
Department of Ophthalmology

Correspondence to: Ms Sushma Dhar-Munshi, Department of Ophthalmology, Room no. 5.012, Level 5, Lanesborough Wing, St George’s Hospital, Blackshaw Road, London SW17 0QT Accepted for publication 16 March 2000

Acute sixth nerve palsy in vitamin A treatment of xerophthalmia

EDITOR—Vitamin A deficiency remains a leading cause of blindness worldwide with xerophthalmia affecting 5–10 million children, resulting in 250 000–500 000 new cases of blindness each year. In the developed world, vitamin A deficiency is rare and usually occurs in the setting of malnutrition (such as cystic fibrosis and small bowel disease), liver disease, or malnutrition. Xerophthalmia is a medical emergency carrying a high risk of blindness, infection and death. Immediate administration of at least 2 weeks of vitamin A is required. Such rapid restoration of vitamin status is felt to be extremely safe at recommended doses. Appropriate dosing regimens in infants have been less clear than in older children and adults. Reports of side effects are limited, and therefore we report a case of acute sixth nerve palsy in an infant receiving intramuscular vitamin A for xerophthalmia secondary to cystic fibrosis.

CASE REPORT
A 5 month old male infant with a long history of feeding intolerance was admitted to our hospital for severe irritability and failure to thrive. In the course of his examination, a sweat test was performed confirming the diagnosis of cystic fibrosis. Appropriate nutritional therapy and pancreatic enzyme replacement was commenced. The infant had also been treated by his paediatrician for “conjunctivitis” of his right eye for the preceding 2 months with topical antibiotics. On the ophthalmic examination, the infant's visual acuity was fix and follow but he had an obvious bilateral strabismus. Appropriate nutritional therapy and pancreatic enzyme replacement was commenced. The infant had also been treated by his paediatrician for “conjunctivitis” of his right eye for the preceding 2 months with topical antibiotics. On the ophthalmic examination, the infant's visual acuity was fix and follow. Bilateral strabismus was present and the left eye was not fixating. A diagnosis of xerophthalmia was made.

Vitamin A therapy was promptly commenced, with 50 000 IU (water miscible retinyl palmitate) intramuscularly to be given immediately and then to be repeated on the following day. After the first 50 000 IU, prominent bulging of the fontanelle was observed, although the infant remained alert and happy, and was feeding well. The second dose of 50 000 IU was therefore postponed for 48 hours, to be administered in two divided doses over 2 consecutive days. These doses were well tolerated, with gradual improvement of the bulging fontanelle noted in a week. Five days after the initial vitamin A dose, a complete abduction deficit of the infant's left eye was noted, in keeping with an acute sixth nerve palsy of the left eye. The infant remained alert and happy, and

www.bjophthalmol.com
there were no other signs of raised intracranial pressure. The corneal ulcer of the right eye was fully healed at this time. The infant was standing but may be due to altered CSF resorption or production. Nevertheless, this case attests to the relative safety of vitamin A administration in infants.

EUGENE W M NG
NATHAN G CONGDON
ALFRED SOMMER

Wilmer Ophthalmological Institute and the Dana Center for Preventive Ophthalmology, The Johns Hopkins Hospital, and the Johns Hopkins University School of Hygiene and Public Health, Baltimore, MD, USA

Correspondence to: Nathan G Congdon, MD, MPH, The Wilmer Ophthalmological Institute and Corneal Service, The Johns Hopkins Hospital, 600 North Wolfe Street, Baltimore, MD 21287, USA

Accepted for publication 15 March 2000

Successful treatment of ocular invasive mould infection (fusariosis) with the new antifungal agent voriconazole

EDITOR,—Voriconazole is a new, highly potent, triazole with broad spectrum activity against fungi, including moulds as well as antifungal resistant Candida spp. Like other azole antifungal agents it interferes with ergosterol biosynthesis. Its antifungal activity has been shown in several experimental as well as clinical studies.1

CASE REPORT

In November 1998, a 16 year old girl was transferred to the university eye hospital in Düsseldorf with a severe ulcerative hypopyon keratitis in the left eye from which she had been suffering for 3 months after swimming in a lake in Italy. Smears, scrapings, and serology gave no hint of the aetiology. Despite intensive topical antibacterial, anti-acanthamoebal, antifungal, and antitherpetic therapy, as well as cryoapplication, her clinical situation had deteriorated continuously before admission to our hospital. As an optical rehabilitation was unlikely, owing to the severely infiltrated cornea, a perforating keratoplasty was performed. Postoperatively, the patient was given systemic as well as topical antibiotics. The first 3 days postoperatively were inconspicuous, but from the sixth day on a hypopyon could again be seen. The hypopyon progressed and we could identify, by ultrasound biomicroscopy the focus at the remaining recipient cornea. We removed this focus which was highly suspected of being a fungal colony and sent it to the microbiology department (an attempt to culture bacteria or fungi failed). Antifungal therapy with systemic fluconazole (200 mg/day intravenously) and topical amphotericin B (0.3% every 2 hours) were started, but the clinical picture still deteriorated. At that time a filamentous fungus was diagnosed histopathologically in the excised corneal button (Fig 1). Because of the morphological similarities between Aspergillus flavus and Pseudallescheria boydii on histology these potent causes of keratitis could not be differentiated by this technique alone. Immunochemical examination of mycelia containing tissue sections with a panel of specific antifungal antibodies, all Grocott methamine silver positive hyphae were identified as Fusarium species because a strong and uniform reactivity was obtained only with a heterologously absorbed polyclonal antibody raised towards somatic antigens of Fusarium solani.2

As the antifungal therapy had no effect whatsoever, the regimen was changed to systemic itraconazole (Sempere) 200 mg twice daily (a triazole which is known to be effective against some amphotericin B resistant mould species) for 3 days again with no clinical effect.

Owing to the lack of response to conventional therapy, we obtained the new antifungal agent voriconazole, from Pfizer, on an compassionate use basis. Voriconazole was started at a dosage of 6 mg/kg intravenously twice on day 1 followed by 4 mg/kg intravenously twice daily. This well tolerated therapy produced a significant clinical improvement. However, after 10 days the disease relapsed (Fig 2). Owing to the initial positive response it was considered that the relapse might be due to suboptimal penetration to the site of infection. Voriconazole therapy was changed to 6 mg/kg by mouth twice daily. Voriconazole was also injected intracamerally, at a dosage of 10 µg/0.1 ml. Topical antifungal therapy was switched from amphotericin B 0.3% every hour to voriconazole 1% every half hour. In addition, any remaining suspicious intracocular material was again excised and the anterior chamber was irrigated with a 3 µg/ml voriconazole solution. After this procedure, healing finally took place, and the patient was released from hospital; voriconazole was discontinued after 8 weeks. The corneal graft remained clear and best corrected vision was 0.9. There were no local or systemic adverse effects during this highly potent antifungal regimen. A transient elevation of liver enzymes (a known adverse event of azole antifungal agents) at the end of therapy and after cessation has been attributed to the study drug. Topical administration was well tolerated.

COMMENT

This is the first time that the efficacy of voriconazole in the treatment of ocular invasive fungal infection has been demonstrated. Topical administration has been tolerated well even when injected into the anterior chamber. Its obvious antifungal activity and favourable pharmacological properties, especially the low range of side effects, will make this new drug attractive for future studies on invasive ocular infections.

ALEXANDER REIS
RAINER SUNDMACHER
Eye Hospital, Heinrich-Heine-University Duesseldorf

KATHRIN TINTELNOT
Robert-Koch-Institut Berlin

HANSJURGEN AGOSTINI
Eye Hospital, University of Freiburg

HENRIK ELVANG JENSEN
The Royal Veterinary and Agricultural University, Department of Pharmacology and Pathobiology, Copenhagen

CHRISTOPH ALTHAUS
Eye Hospital, Heinrich-Heine-University Duesseldorf

www.bjophthalmol.com

Figure 1 Grocott methamine silver positive hyphae in the excised corneal button.

Figure 2 Ultrasound biomicroscopy discloses relapse of intraocular fungal disease.
Severe intraocular inflammation after a change of HAART

EDITOR,—Patients with previous cytomegalovirus retinitis (CMVR) have been observed to develop further severe intraocular inflammations after commencing antiretroviral treatment.

CASE REPORT

A 43 year old man, diagnosed as HIV positive in 1984, was treated in January 1996 for bilateral CMVR that responded to systemic ganciclovir.

In April 1996 he started saquinavir, stavudine, indinavir, and toxoplasma cysts were all negative. A few atypical lymphocytes were seen and PCR for CMV, toxoplasmosis, varicella zoster, and Epstein–Barr viruses. Cytology did not reveal lymphoma. Histology showed retinal necrosis and exudates. No viral inclusion bodies were found and stains for acid fast bacilli, fungi, and Candida albicans isolates from oral cavities of patients with human immunodeficiency virus infection. Antimicrob Agents Chemother 1997;41:13–16.

In February 1997 he developed immune recovery vitritis in both eyes. Best corrected visual acuities (BCVA) were 6/6, N5 right; 6/6, N6 left. A viral load was 18 000 copies 10^6/ml and CD4+ count 40 cells 10^6/l. A fluorescein angiogram showed bilateral CMO with macular ischaemia (Fig 1) and he was treated with 250 mg sustained release oral acetazolamide, twice daily. After 1 month’s treatment there was a subjective improvement in vision but no objective change in VA. In September 1997 his BCVAs were 6/6, N5 right; 6/6, N6 left. In December 1997 his CMVR was inactive and ganciclovir was stopped.

In February 1998 he developed marked lipodystrophy and consequently was changed to efavirenz, hydroxyurea, didanosine, and lamivudine. A viral load was 18 000 copies 10^6/ml and CD4+ count was 128 cells 10^6/l and his CD4+ count was 128 cells 10^6/l. In April 1998 his CD4+ count had fallen to less than 500 copies 10^6/l and his CD4+ count was 128 cells 10^6/l (Fig 2).

Six weeks after changing HAART, he complained of blurred left vision. Visual acuity was 6/6 right, 6/9 left. There was a left vitritis with a white retinal lesion along the inferotemporal vessels at the margin of inactive CMVR (Fig 3). A diagnosis of relapse of CMVR was made and he was treated with intravenous ganciclovir.

Two weeks later vision was counting fingers, the vitritis was worse, and the retinal lesion had extended with more haemorrhage. He was treated for presumed toxoplasmosis with sulphadiazine, pyramethamine, and folic acid but 1 week later his vision was hand movements and the lesion was larger (Fig 4). A diagnostic vitrectomy was performed. Polymerase chain reaction (PCR) was negative for CMV, toxoplasmosis, varicella zoster, and Epstein–Barr viruses. Cytology did not reveal lymphoma.

One week later the eye was painful and vision was perception of light. A retinal biopsy was performed in an area of active inflammation. Histology showed retinal necrosis and exudates. No viral inclusion bodies were found and stains for acid fast bacilli, fungi, and toxoplasma cysts were all negative. A few atypical lymphocytes were seen and PCR for...
B cell clonality showed oligoclonal banding. A contrast enhanced magnetic resonance imaging of the brain and orbits was normal.

Eighteen months later the BCVs are 6/6, N5 right; perception of light, left. A choriori- nal scar persists in the macular and temporal retina of the left eye but there is no active inflammation in either eye.

COMMENT

Investigations in this patient failed to identify any cause for the intraocular inflammation; however, the cessation of the inflammatory process in the absence of any specific treat- ment is similar to the clinical course of immune recovery vitritis and suggests a non-infectious mechanism. The temporal associa- tion with the change in HAART, together with the PCR findings, both imply an immunological cause. It is unclear why this response was unilocular.

The presence of multiple discrete bands on PCR may indicate a premalignant lymphoproliferation but 18 months later the eye is quiet with no recurrence and the patient remains well. Our hypothesis is that the intraocular inflammation occurred because the new combi- nation HAART produced a second, very exaggerated immune response to pre-existing antigens.

Clinicians should be aware that changing the combination of HAART may be associ- ated with a rebound intraocular inflammation with an oligoclonal lymphocyte response. Early recognition and treatment with systemic steroids may have prevented blindness in our patient.

TIMOTHY L JACKSON
WILLIAM MEACOCK
Medical Eye Unit, St Thomas’s Hospital,
London SE1 7EH

MIKE YOULE
Kohler Centre, Chéquea and Westminster Hospital,
London

ELIZABETH M GRAHAM
Medical Eye Unit, St Thomas’s Hospital,
London SE1 7EH

Correspondence to: Dr E M Graham

timljackson@hotmail.com

Accepted for publication 13 April 2000

Table 1 Composition of the herbal medicine (kampo) extract obtained from mixed raw herbs in the above ratio

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>JP Scutellaria root</td>
<td>2.0 g</td>
</tr>
<tr>
<td>JP Glycyrrhiza root</td>
<td>2.0 g</td>
</tr>
<tr>
<td>JP Platycodon root</td>
<td>2.0 g</td>
</tr>
<tr>
<td>JP Orygum</td>
<td>2.0 g</td>
</tr>
<tr>
<td>JP Arctaylodes rhizome</td>
<td>2.0 g</td>
</tr>
<tr>
<td>JP Rhubarb rhizome</td>
<td>1.5 g</td>
</tr>
<tr>
<td>JP Schionepeta spike</td>
<td>1.2 g</td>
</tr>
<tr>
<td>JP Gardena fruit</td>
<td>1.2 g</td>
</tr>
<tr>
<td>JP Peony root</td>
<td>1.2 g</td>
</tr>
<tr>
<td>JP Cadium rhizome</td>
<td>1.2 g</td>
</tr>
<tr>
<td>JP Japanese anglica root</td>
<td>1.2 g</td>
</tr>
<tr>
<td>JP Mentha herb</td>
<td>1.2 g</td>
</tr>
<tr>
<td>JP Nappobharkoria root</td>
<td>1.2 g</td>
</tr>
<tr>
<td>JP Ephedra herb</td>
<td>1.2 g</td>
</tr>
<tr>
<td>JP Forsythia fruit</td>
<td>1.2 g</td>
</tr>
<tr>
<td>JP Ginger rhizome</td>
<td>0.4 g</td>
</tr>
<tr>
<td>Talc</td>
<td>3.0 g</td>
</tr>
<tr>
<td>Anhydrous mirabibulum</td>
<td>0.75 g</td>
</tr>
</tbody>
</table>

was observed until now, 4 years after the first examination.

COMMENT

Although oriental herb medicines have been beneficial to patients, scientific explanation of their pharmacological mechanisms has lagged behind the widespread use of kampo in clinical practice. In this case, the clinical and morphological findings were similar to those observed in Fabry’s disease and in drug induced keratopathy. In drug induced lipid storage keratopathy, the corneal deposits are bilateral, dose and duration related, and gradually disappear after the drug is withdrawn. Although kampo is believed to be very safe, it seems advisable to dictate caution with respect to this possible adverse effects.

TORU AKATSU
RUTH ISANTO
KIYOO NAKAYASU
ATSUSHI KANAI
Department of Ophthalmology, Juntendo University School of Medicine

Correspondence to: Kiyoo Nakayasu, MD, Department of Ophthalmology, Juntendo University School of Medicine, 3-1-3, Hongo, Bunkyo-ku, Tokyo, 113-843, Japan

Accepted for publication 13 April 2000

Branch retinal artery occlusion; another complication of sildenafil

EDITOR— Sildenafil is the oral treatment for erectile dysfunction and was licensed throughout Europe in September 1998. It is a potent, selective inhibitor of the isoenzyme phosphodiesterase type 5 (PDE 5). Inhibition of PDE5 leads to prolongation of cyclic guanosine monophosphate (cGMP) activity in erectile tissue and increases the natural
COMMENT

A number of adverse effects of sildenafil have been reported and these include headache, facial flushing, dyspepsia, and nasal congestion. There have been reports of prolonged erection and priapism, myocardial infarction, sudden cardiac arrest, ventricular arrhythmias, and hypertension. In patients taking organic nitrates, it can lead to a sudden and severe drop in blood pressure. A cardiac examination, including exercise treadmill testing has been recommended before starting patients on sildenafil. Various ocular side effects have been described following the use of sildenafil. These fall into two major categories: (i) those secondary to the weak inhibitory effects of sildenafil on the isoenzyme PDE6 in the retina. These side effects include temporary loss of vision, increased intraocular pressure, green/blue tingeing of vision, increased sensitivity to light, and blurred vision. There have also been reports of retinal degeneration. A decrease in the a-wave and b-wave amplitude in the electroretinogram (ERG) of five healthy men 1 hour after oral intake of 100 mg sildenafil has also been reported and these changes completely disappeared 5 hours later. (ii) Ocular vascular events such as haemorrhages, venous occlusion, and anterior ischaemic optic neuropathy have been mentioned but so far there has been no referenced report of retinal artery occlusion following the use of sildenafil. In addition to these ocular side effects, a pupil sparing third nerve palsy due to sildenafil has also been reported. In the case reported here, a sudden rise in intraocular pressure or an embolic phenomenon due to short lived cardiac arrhythmias may have produced branch retinal artery occlusion. This case report clearly suggests that the earlier claim that there is no cause for alarm over retinal side effects of sildenafil must be re-examined and a potentially blinding complication like the one reported here should be seriously considered and discussed with all the patients started on sildenafil, more so because of the fact that most of the patients using this medication are already at high risk of developing vascular accidents in the body.

AJAY TRIPATHI

Correspondence to: Mr Ajay Tripathi
ajay@pinki.freeserve.co.uk
Accepted for publication 18 April 2000

Branch retinal artery occlusion; another complication of sildenafil

AJAY TRIPATHI and NIALL P O'DONNELL

Br J Ophthalmol 2000 84: 928
doi: 10.1136/bjo.84.8.928g

Updated information and services can be found at:
http://bjo.bmj.com/content/84/8/928.8

These include:

References
This article cites 7 articles, 0 of which you can access for free at:
http://bjo.bmj.com/content/84/8/928.8#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/