Comparative study of intraoperative mitomycin C and β irradiation in pterygium surgery

EDITOR.—We read with interest the study that compared intraoperative mitomycin C with β irradiation in primary pterygium surgery. The authors rightly commented that long term complications of β irradiation, such as scleral necrosis, may arise more than 10 years after the irradiation.1 Longer follow ups are necessary to fully evaluate such complications.

We performed primary pterygium excision with intraoperative β irradiation in one eye of six patients between 1988 and 1990. A dose of 1000 rad of β irradiation was applied to the scleral bed intraoperatively and 1 week later. The patients were recently reviewed in our clinic for recurrence and complications. We also performed ultrasound biomicroscopic examination (UBM) for both eyes in each patient, looking for corneal and scleral thinning. Corneal thickness was arbitrarily measured 0.5 mm anterior to the scleral spur at the 12, 3, 6, and 9 o'clock positions of each eye, while the scleral thickness was measured 2 mm posterior to the corneal measurements at the same positions.

Mean follow up was 138.0 months. Mean age at time of surgery was 37.5 years (range 32–45 years). All six eyes were right eyes with nasal pterygia in male patients. No recurrence was found, using the same definition. There was neither significant deterioration in visual acuity nor increase in intraocular pressure in any eye. There were no signs of inflammation. There were no significant differences in the scleral and corneal thickness between the treated nasal position of the operated eye (mean scleral 0.617 (SD 0.122) mm; mean corneal 0.656 (0.076) mm) and the control nasal position of the fellow eye (mean scleral 0.611 (0.030) mm; mean corneal 0.645 (0.044) mm).

Furthermore, there were no significant differences in the mean scleral and corneal thickness between the operated eye (scleral 0.590 (0.077) mm; corneal 0.635 (0.067) mm) and the fellow eye (scleral 0.590 (0.059) mm; corneal 0.624 (0.054) mm). The mean scleral and corneal thicknesses were calculated by averaging the scleral or corneal thickness at the four measured positions in each eye.

It appears that β irradiation is safe, even in the long term. We believe these additional data will contribute to the recommendation of this technique.2

Visual field defects after vitrectomy with fluid-air exchange

EDITOR.—The paper by Cullinane and Cleary1 presents an excellent prospective study of peripheral visual field loss in patients undergoing macular hole surgery. The authors compared vitrectomy with complete posterior cortical vitreous peeling to limited vitrectomy with removal of cortical vitreous off the macula, but not off the optic nerve head or the peripheral retina. The authors showed a statistically significant decrease in peripheral visual field defects with the limited vitrectomy technique (0%, 0/22 patients) compared with the complete vitrectomy group (23%, 18/82 patients).

The authors postulated that this difference is due to the avoidance of traction on the optic nerve head anterior to the posterior hyaloid, thus limiting damage to the peripapillary nerve fibre layer, which they believed would be most severe nasally because of the periretinal attachments nasally. This explanation does not take into account the variable position of visual field defects found in other studies based on the position of the infusion cannula. If the infusion cannula is superiorly located, visual field defects occur superiorly, implicating inferior retinal damage. If the infusion cannula is inferonasally, visual field defects occur inferonasally and not inferotemporally. The inferotemporal location of field defects noted in most studies is based on the placement of the infusion cannula inferotemporally in three port vitrectomy, which results in infused air directed towards the superonasal mid-peripheral retina.

Animal studies show damage to the inner limiting membrane, nerve fibre layer, and ganglion cells of the retina in the path of the pressurised air flow from the infusion cannula.4–5 This inner retinal damage can be caused by desiccation of the retina or by direct mechanical damage by the pressurised air flow.6 However, humidification of air does not prevent inner retinal damage in animal models,5,7 and the sharp demarcation between damaged and undamaged retina on electron microscopic studies supports the theory of direct mechanical damage to the inner retina.8 In addition, increasing the infusion air pressure also decreased the risk of inner retinal damage.9 What I think this work by Cullinane and Cleary shows is that leaving the peripheral vitreous in place is another way of protecting the peripheral retina from mechanical damage by pressurised air flow. However, I am concerned about the potential risk of increased postoperative retinal detachment, which was 10% in the limited vitrectomy group and 4% in the complete vitrectomy group, but was not statistically significant because of small sample size. However, this increased risk of retinal detachment was also a concern in a previous study utilising similar surgical techniques (Brian Conway, Western Association for Vitreoretinal Education Meeting, Maui, Hawaii, 1996).

Because of the studies on retinal damage by pressurised air infusion and the significance of high infusion air pressure, it would be important to know the usual infusion air pressure utilised during fluid-air exchange by the authors, and if the infusion air pressure varied at any point during the period of the study or between the two vitreotomy groups. Currently, in order to minimise retinal damage induced by pressurised air infusion during vitrectomy for any surgical indication requiring fluid-air exchange, I would recommend using a low infusion air infusion pressure.

GREGG T KORAME
Division of Ophthalmology, Department of Surgery, University of Hawaii School of Medicine, Honolulu, Hawaii and The Retina Center at Pali Momi, Kapalama Health, Aina, Hawaii
Correspondence to: The Retina Center at Pali Momi, 98–1079 Moanalua Road, Suite 470, Aiea, Hawaii 96701, USA
retnainh@aol.com


Sclerotomy complications following pars plana vitrectomy

EDITOR.—The work of West and Gregor again points out the importance of sclerotomy complications following pars plana vitrectomy. They demonstrate that, even in the hands of a skilful and experienced surgeon, vitreous haemorrhage after vitrectomy for diabetic retinopathy is common and requires vitreous cavity washout (VCWO) in 12% of cases. In their series, over half of the eyes had detectable fibrovascular ingrowth (FVI) as the cause of the haemorrhage.

Interestingly, in this case series of 159 eyes, no occurrences of anterior hyaloidal fibrovascular proliferation (AHFP) were noted. Definitive evidence of the relation between these two entities has been controversial, to say the least. Part of the controversy is due to a misunderstanding of the nature and pathogenesis of FVI. As McLeod points out in his editorial, FVI is a term that has been used inadvisedly, suggesting that epithelial tissue grows into the eye through the sclerotomy incision. While epithelial tissue, scleral fibroblasts, and ciliary epithelium all contribute, the majority of the fibroproliferative healing of a sclerotomy originates from the uvea of the ciliary body.

In normal wound healing, early fibrovascular proliferation in the incision is followed by its involution and contraction, with the result being the small scar seen at the internal aspect of a healed sclerotomy. Inevitably, because of the proximity of the vitreous base and anterior hyaloid, vitreous strands are adherent to the wound and fibrous tissue extends a short way into the vitreous body. This tissue may contain blood vessels, even with normal healing. From this perspective, all sclerotomy wounds heal with fibrovascular ingrowth. That is, ingrowth of tissue from the eye wall extends into the vitreous cavity. Fortunately, only in unusual circumstances does this process become exaggerated and result in what clinicians have termed FVI with its concomitant intraocular mischief.


MAILBOX

www.bjophthalmol.com
Corneal transplantation: how successful are we?

Editor,—The commentary by Waldock and Cook1 on the survival rates of corneal grafts highlights a number of issues. In particular, they focus on the use of long-term follow up data in the UK. The value of such data is clearly evident from the Australian Corneal Graft Register. Moreover, in the present climate of cost containment and evidence based medicine, the collection of such data has surely become a necessity. Many of the questions raised, whether simply comparing graft survival rates of individual units with national data or investigating more fundamental issues such as HLA matching, visual outcome, or surgeon experience require large amounts of data, properly designed studies, and appropriate statistical analysis—capabilities beyond most individual centres but readily achievable within the NHS. It is to be hoped that, through the use of the organ transplant community, and to a certain extent by corneal graft surgeons, is well understood, centralised data collection and analysis, for example.

The good news that just such a system is now in place for all corneal graft surgeons in the UK. The Royal College of Ophthalmologists and UK Transplant (UKT) have initiated an Ocular Tissue Transplant Audit, which will primarily address the sorts of questions posed by Waldock and Cook. Indeed, the audit is already being used for data capture for the Corneal Transplant Follow-up Study II, which aims to resolve the uncertainty surrounding HLA-DR matching and corneal graft rejection. Instead of just 1 year follow up as in the original CTFS,2 follow up for these patients will continue in the long term through the audit.

As important, however, is the opportunity for all ocular tissue transplants to be recorded and the outcome audited. Indeed one can foresee the day when this will be obligatory, as is the case with solid organs. To record such data with UKT will not only provide surgeons with details of their own actions, but with an independent confidential analysis of clinical outcomes, which they will increasingly be expected to have available.

WJ ARMITTAGE
J M CREEWE
Division of Ophthalmology, University of Bristol, Bristol Eye Hospital, Bristol BS1 2LX, UK
A B TULLOCH
Manchester Royal Eye Hospital, Oxford Road, Manchester M13 9WH, UK
Correspondence to: W J Armitage
w.j.armitage@bristol.ac.uk

References
As a physiologist, Loewenfeld has written a book with a thorough foundation in basic science, with comprehensive discussion covering pupillary function across the animal kingdom, not simply restricting the project to humans.

Having been inscribed over a near 40 year period, the text has a strong historical perspective, presenting recent work in chronological order over a period during which understanding of pupillary function has evolved. In striving to be comprehensive Irene Loewenfeld has included papers which may subsequently have been reinterpreted or simply proved incorrect. She has willingly injected a subjective flavour to the book when giving her own interpretation of the work which serves to make the text readable. This is also true for the bibliography where she includes “reference manager” style comments about the value of many references.

By its nature, such a reference tome can be difficult to “dip into”. To assist those who may want rapid access to a subject each section is presented on three levels: a “thummbail” summary for readers in a hurry, elaboration with historical perspectives for those with more time; plus an additional level with material delving into the background for readers keen to look to the source of understanding.

One section where clinical work may be updated is the chapter on glaucoma. Here the text focuses on historical record of the pharmacological influence of drugs upon pupil function and their role in therapeutics. Recent clinical work on pupillometry in glaucomatous optic neuropathy aimed towards developing “pupil perimetry” has not been presented.

However, with this one exception, this text represents the definitive work upon the pupil which all ophthalmologists will find valuable, either as an introduction to the field or as the last word on the subject.

J P DIAMOND

NOTICES

Vision 2020: cataract outcomes

The latest issue of *Community Eye Health* (35) discusses cataract surgery outcome. For further information please contact *Community Eye Health*, International Centre for Eye Health, Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL. (Tel: +44 (0) 20-7608 6909/6910/6923; fax: +44 (0) 7250 3207; email: eyeresource@ucl.ac.uk)

Annual subscription £25. Free to workers in developing countries.

Second Sight

Second Sight, a UK based charity whose aims are to eliminate the backlog of cataract blind in India by the year 2020 and to establish strong links between Indian and British ophthalmologists, will be sending volunteer surgeons to India early in 2001. Details can be found at the charity website at www.secondsight.org.uk or by contacting Dr Lucy Mathen (email: lucymathen@yahoo.com).

Residents’ Foreign Exchange Programme

Any resident interested in spending a period of up to one month in departments of ophthalmology in the Netherlands, Finland, Ireland, Germany, Denmark, France, Austria, or Portugal should apply to: Mr Robert Acheson, European Board of Ophthalmology, Institute of Ophthalmology, University College Dublin, 60 Eccles Street, Dublin 7, Ireland.

American Institute of Ultrasound in Medicine—Millennium Ultrasound Course Series

A course entitled “Obstretical Ultrasound” will be held in Marina del Rey, CA, on 12–14 January 2001. Further details: Stacey Bessling, Public Relations Coordinator, AIUM, 14750 Sweitzer Lane, Suite 100, Laurel, MD 20707-5906, USA (tel: 301-498-4100; email: sbessling@aium.org).

Optometry Study Tour to Kenya, Tanzania, and Zanzibar

The tour offers a wonderful opportunity to optometrists and ophthalmologists to examine eye care in East Africa. It will take place from 28 January to 10 February 2001. Further details: Master Travel, Croxted Mews, 288 Croxted Road, London SE24 9BY (tel: 0208 678 5320; fax: 0208 674 2712; email: tours@mastertravel.co.uk).

First International Congress on Non-Penetrating Glaucoma Surgery

The First International Congress on Non-Penetrating Glaucoma Surgery will take place in Lausanne, Switzerland on 1–2 February 2001. Further details: Dr Tarek Shaarawy, Organiser, University of Lausanne, Hôpital Ophtalmique Jules Gonin, Avenue de France 15, 1004 Lausanne, Switzerland (tel: 41 21 626 81 11; fax: 41 21 626 83 88; website: www.glaucoma-lausanne.org).

Call for papers—6th European Forum on Quality Improvement in Health Care, 29–31 March 2001, Bologna, Italy

Further details: BMJ/BMA Conference Unit, BMA House, Tavistock Square, London WC1H 9JR, UK (tel: +44 (0) 20 7378 6499; fax: +44 (0) 20 7378 6869; email: quality@bma.org.uk; website: www.quality.bmj.com).

XXV Detachment Course

The XXV Detachment course, retinal and vitreous surgery, will be held in Poznan, Poland on 5–6 april 2001. Further details: Professor Krystyna Pecold, Katedra I Klinika Okulistyki, ul Dlugi 1/2, 61-849 Poznan, Poland (tel/fax: 004861-8527619) or Professor Ingrid Kreissig, Univ-Augenklinik, Schleichtstrasse 12, D-72076 Tuebingen, Germany (fax: 49-7071-293746; email: ingrid.kreissig@uni-tuebingen.de).

Optometry 01

Optometry 01 will take place on 21–23 April 2001 with more than 100 events—lectures and workshops—at the Atrium Gallery, NEC, Birmingham, UK. Further details: tel: 020 261 9661; email: info@optometry01.co.uk; website: www.optometry01.co.uk.

14th Annual Meeting of German Ophthalmic Surgeons

The 14th Annual Meeting of German Ophthalmic Surgeons will be held in the Meisterringhalle, Nurenberg, Germany on 17–20 May 2001. Further details: MCN Medizinische Congress-organisation Nurenberg AG, Zerrabelshofstrasse 29, 90478 Nuremberg, Germany (tel: +49-911-3931621; fax: +49-911-3931620; email: doerflinger@mcn-nuernberg.de).

European Association for the Study of Diabetic Eye Complications (EASDEC)

The next meeting of the European Association for the Study of Diabetic Eye Complications (EASDEC) will be held in Paris, France, on 19–20 May 2001. Further details: Colloquium, 12 Rue de la Croix Faubin, 75 557 Paris Cedex 11, France (tel: +33-1-44 64 15 15; fax: +33-1-44 64 15 10; email: s.mundler@colloquium.fr).

American Institute of Ultrasound in Medicine—Millennium Ultrasound Course Series

A course entitled “Obstretical and Gynecological Ultrasound” will be held in New York City, NY, on 24–26 August 2001. Further details: Stacey Bessling, Public Relations Coordinator, AIUM, 14750 Sweitzer Lane, Suite 100, Laurel, MD 20707-5906, USA (tel: 301-498-4100; email: sbessling@aium.org).

4th International Conference on the Adjuvant Therapy of Malignant Melanoma

The 4th International Conference on the adjuvant therapy of malignant melanoma will be held at The Royal College of Physicians, London on 15–16 March 2002. Further details: Conference Secretariat, CCI Ltd, 2 Palmerston Court, Palmerston Way, London SW8 4AJ, UK (tel: +44 (0) 20 7720 0600; fax: +44 (0) 20 7720 7177; email: melanoma@confcomm.co.uk; website: www.confcomm.co.uk/Melanoma).
Visual field defects after vitrectomy with fluid-air exchange

GREGG T KOKAME

Br J Ophthalmol 2001 85: 121
doi: 10.1136/bjo.85.1.121a

Updated information and services can be found at:
http://bjo.bmj.com/content/85/1/121.2

These include:

References
This article cites 5 articles, 1 of which you can access for free at:
http://bjo.bmj.com/content/85/1/121.2#ref-list-1

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/