Reduced amplitude and delayed latency in the foveal response of multifocal electroretinogram in early age related macular degeneration

Jodie Li, Mark O M Tso, Tim T Lam

Abstract

Aim—To explore the use of multifocal electroretinograms (MERG) in detecting early changes in age related macular degeneration (AMD).

Method—15 pre-AMD or early AMD eyes showing retinal drusen or irregular fundus pigmentation with window defects by fluorescein angiography (FA) and mildly decreased visual acuity were examined and compared with their asymptomatic fellow eyes. 20 age matched normal eyes were included as controls. MERG was recorded by a Veris system (version 3.0) using a 103 hexagon stimulus and 218 second total recording time per eye. The first order kernel was used to calculate amplitudes and latencies in three configurations: the nasal and the temporal areas, the superior and the inferior areas, and six concentric rings centred on the fovea.

Results—There were no significant differences in the amplitudes and the latencies between the different regions (nasal versus temporal and superior versus inferior) of the retina as well as between the different groups of eyes (normal, pre-AMD or early AMD, and the asymptomatic fellow eyes) in each region. Using the concentric configuration, the foveal amplitude of pre-AMD or early AMD eyes was significantly suppressed when compared with the age matched control group and their average latency was longer in the fovea than in outer rings and significantly prolonged when compared with the normal control group. Similar changes in amplitude and latency were also observed in the asymptomatic fellow eyes.

Conclusion—Significant abnormality in the foveal amplitude and the foveal latency of MERG could be detected in pre-AMD or early AMD eyes as well as their asymptomatic contralateral eyes, suggesting MERG as a sensitive tool in detecting early foveal abnormalities in AMD.

Normal ageing retinas exhibit a spectrum of changes such as decreased density of foveal photoreceptors and retinal pigment epithelial (RPE) cells while age related macular degeneration (AMD) retinas display similar losses, with or without subretinal neovascularisation, including atrophy of the pigment epithelium but with drusen as an early indicator.1–3 This loss of photoreceptors may affect the electrophysiological responses from the retina. Fish and Birch showed that the amplitudes of the central responses in focal electroretinograms (ERGs) of AMD eyes correlated with Snellen’s acuity measurements while the latency was less predictive.4 Mayer et al showed that foveal flicker sensitivity was reduced in “exudative AMD risk eyes.”5 6 Hence, foveal electrophysiological measurements may be a useful tool in detecting early AMD changes.

Sutter and Tran7 introduced a multifocal ERG (MERG) system, which records the responses of multiple areas of the posterior retina in one sitting. It has been used in the detection of functional deficiency in diabetic retinopathy,8 9 occult macular dystrophy,10 myopia,11 macular hole,12 retinitis pigmentosa,13 and glaucoma.14 To explore the possible use of MERG in detecting early changes in AMD, we examined the MERGs from both eyes of patients who showed unilateral pre-AMD or early AMD changes.

Methods

In this study, early AMD changes were defined as mild visual impairment, age over 50, and macular drusen. All cases of early AMD eye were confirmed by two ophthalmologists (Li and Tso) independently. Almost all drusen were of the hard, single, dry type except patients 182 and 218 (Table 1). Pigmentary changes were hypopigmentation and they were light yellow drusen-like but not outstanding. These early AMD cases were selected from approximately 1500 local residents over the age of 40 in a United Nation Adult Vision Study (Hong Kong) in 1997. Preliminary screening showed 35 participants with unilateral macular drusen, macular irregular pigmentation, and decreased vision (below 1.0). Twenty five subjects then came back 1 year later. In the end, the resulting 15 subjects agreed to have MERG and fluorescein angiography (FA).

MERGs were recorded from two groups of subjects (normal and patient groups) and divided into three groups of eyes: (1) 20 eyes of age matched normal volunteers; (2) 15 eyes with pre-AMD or early AMD; and (3) 15 asymptomatic, normal appearing fellow eyes of patients in group 2. The study was approved by the human ethics committee of the Chinese University of Hong Kong and adhered to the Declaration of Helsinki.

Each individual signed a consent form before the study. Normal volunteers with no known systemic or eye diseases were included.
Table 1 Clinical and MERG (configuration C) data of pre-AMD or early AMD eyes

<table>
<thead>
<tr>
<th>Patient No</th>
<th>Age</th>
<th>Sex/eye</th>
<th>VA</th>
<th>FP</th>
<th>FA</th>
<th>Ams</th>
<th>P1 amplitude (nV/deg²)</th>
<th>N1 latency (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R1</td>
<td>R2</td>
</tr>
<tr>
<td>78</td>
<td>47</td>
<td>F/LE</td>
<td>0.7</td>
<td>P</td>
<td>W</td>
<td>N</td>
<td>54.8</td>
<td>31.7</td>
</tr>
<tr>
<td>83</td>
<td>49</td>
<td>M/RE</td>
<td>0.8</td>
<td>P</td>
<td>N</td>
<td>C</td>
<td>30.1</td>
<td>19.7</td>
</tr>
<tr>
<td>155</td>
<td>47</td>
<td>F/LE</td>
<td>0.8</td>
<td>d</td>
<td>W</td>
<td>N</td>
<td>73.9</td>
<td>41.9</td>
</tr>
<tr>
<td>156</td>
<td>53</td>
<td>M/LE</td>
<td>0.7</td>
<td>d</td>
<td>—</td>
<td>N</td>
<td>37.9</td>
<td>31.2</td>
</tr>
<tr>
<td>157</td>
<td>49</td>
<td>M/RE</td>
<td>1</td>
<td>P</td>
<td>W</td>
<td>N</td>
<td>44.3</td>
<td>26.3</td>
</tr>
<tr>
<td>158</td>
<td>50</td>
<td>M/RE</td>
<td>0.7</td>
<td>P</td>
<td>W</td>
<td>N</td>
<td>54.9</td>
<td>23.4</td>
</tr>
<tr>
<td>160</td>
<td>52</td>
<td>M/LE</td>
<td>1</td>
<td>P</td>
<td>W</td>
<td>N</td>
<td>59.5</td>
<td>24.3</td>
</tr>
<tr>
<td>161</td>
<td>50</td>
<td>F/RE</td>
<td>0.7</td>
<td>P</td>
<td>W</td>
<td>N</td>
<td>51.1</td>
<td>32.1</td>
</tr>
<tr>
<td>165</td>
<td>51</td>
<td>M/LE</td>
<td>1</td>
<td>P</td>
<td>—</td>
<td>N</td>
<td>46.6</td>
<td>28.9</td>
</tr>
<tr>
<td>172</td>
<td>53</td>
<td>F/LE</td>
<td>0.8</td>
<td>P</td>
<td>W</td>
<td>N</td>
<td>35.2</td>
<td>19.9</td>
</tr>
<tr>
<td>177</td>
<td>59</td>
<td>M/RE</td>
<td>1</td>
<td>d</td>
<td>W</td>
<td>N</td>
<td>24.3</td>
<td>16.1</td>
</tr>
<tr>
<td>182</td>
<td>58</td>
<td>M/LE</td>
<td>1</td>
<td>D</td>
<td>W</td>
<td>N</td>
<td>49.1</td>
<td>27.2</td>
</tr>
<tr>
<td>204</td>
<td>57</td>
<td>M/LE</td>
<td>0.7</td>
<td>d</td>
<td>—</td>
<td>C</td>
<td>48.6</td>
<td>27</td>
</tr>
<tr>
<td>218</td>
<td>55</td>
<td>M/RE</td>
<td>0.7</td>
<td>D</td>
<td>W</td>
<td>C</td>
<td>23.6</td>
<td>15.2</td>
</tr>
<tr>
<td>231</td>
<td>58</td>
<td>M/RE</td>
<td>1</td>
<td>d</td>
<td>W</td>
<td>C</td>
<td>35.1</td>
<td>19.5</td>
</tr>
</tbody>
</table>

VA = visual acuity, FP = fundus picture, FA = fluorescein angiography, Ams = Amsler grid test, — = no FA, P = irregular pigmentation, d = 1 to 3 hard macular drusen, D = soft macular drusen, W = window defect, N = normal, C = change.

Results

Of the 15 pre-AMD or early AMD eyes, nine of them showed a mild decrease in visual acuity. The mean is 0.84 ranging from 0.7 to 1.0 (Table 1). In contrast, the contralateral asymptomatic eyes showed normal visual acuity with a mean of 1.06, ranging form 0.8 to 1.0 (Table 2). Fundus examination showed a majority of the AMD group had hypopigmentation (eight out of 15), five eyes had one or two hard drusen.
Table 3 Summary of P1 amplitudes and N1 latencies with configurations A and B

<table>
<thead>
<tr>
<th>Group</th>
<th>Amplitude (nV/deg²)</th>
<th>Latency (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal (n=20)</td>
<td>15.3 (3.8)</td>
<td>14.2 (2.8)</td>
</tr>
<tr>
<td>AMD (n=15)</td>
<td>13.2 (4.0)</td>
<td>15.9 (0.7)</td>
</tr>
<tr>
<td>Fellow eye (n=15)</td>
<td>12.9 (3.5)</td>
<td>14.5 (4.4)</td>
</tr>
</tbody>
</table>

Table 4 Summary of P1 amplitudes and N1 latencies with configuration C

<table>
<thead>
<tr>
<th>Group</th>
<th>Amplitude (nV/deg²)</th>
<th>Latency (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal (n=20)</td>
<td>60.1 (15.5)</td>
<td>14.2 (1.3)</td>
</tr>
<tr>
<td>AMD (n=15)</td>
<td>44.5 (13.7)</td>
<td>17.1 (1.0)</td>
</tr>
<tr>
<td>Fellow eye (n=15)</td>
<td>49.2 (13.4)</td>
<td>15.8 (1.1)</td>
</tr>
</tbody>
</table>

Discussion

In this study using the first kernel calculation of concentric ring configuration in MERG recordings, we noted a significant reduction in
the P1 amplitude as well as a significant delay in the N1 latency of foveal responses from pre-AMD or early AMD eyes and their asymptomatic fellow eyes when compared with normal control eyes. These findings suggest that both foveal P1 amplitude and foveal N1 latency in MERG measurements may be sensitive means to detect early foveal AMD changes.

Configurations A and B were initially used because it was reported that in normal individuals the nasal retina showed a lower response than the temporal retina while there was no difference in the superior or inferior retina. However, we did not find any significant difference between these different regions of the retina or among the three groups of eyes. Our observation that pre-AMD or early AMD eyes showed suppressed foveal P1 amplitude and prolonged foveal N1 latency is consistent with earlier reports noting foveal electrophysiological abnormality in AMD eyes. Contrary to other studies, we used eyes showing early or pre-AMD symptoms such as drusen and window defects in FA. Whether these eyes would ultimately suffer AMD remains to be determined but our study showed that foveal parameters of MERG are sensitive means to detect foveal changes.

Unlike the regular ERG, the exact origin of the first order kernel measurement is controversial although it is generally accepted that it arises from the cones. The P1 amplitude of the central fovea is believed to be linked to the number and function of photoreceptor cells. Our observation that the pre-AMD or early AMD eyes have a lowered P1 amplitude than their fellow eyes and the normal eyes is consistent with the hypothesis that the AMD eyes may have a reduced number and/or functional deficiency of photoreceptors. According to Kondo et al, the negative and positive deflections in the first order kernel of MERG probably do not correspond to conventional a and b-waves of ERG. Various investigators have suggested that MERG may include responses from the inner retina. It is possible that the noted delay in the N1 latency reflects damages of the inner retinal layers as well as the outer retina. Although both the P1 amplitude and the N1 latency were affected, because of the smaller variations in latency measurements, the latter may be a more useful indicator of the changes.

We thank Michael Marmore, MD, of Stanford University, for commenting on the study. This study was supported in part by RGC grant CUKH405/95M, Hong Kong.

Reduced amplitude and delayed latency in foveal response of multifocal electroretinogram in early age related macular degeneration
Jodie Li, Mark O M Tso and Tim T Lam

doi: 10.1136/bjo.85.3.287

Updated information and services can be found at:
http://bjo.bmj.com/content/85/3/287

These include:

References
This article cites 19 articles, 9 of which you can access for free at:
http://bjo.bmj.com/content/85/3/287#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
Retina (1608)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/