LETTERS TO THE EDITOR

Familial uveal melanoma: report on three sibling cases

Editor,—Uveal melanoma is the most common primary malignant intraocular tumour in adults, representing 70% of all malignant ocular tumours. Untreated these tumours may metastasise, with an incidence of death in the order of 50% within 10 years. The most common sites of metastasis are the liver, lung, bone, and lymph nodes. However, the majority of malignant uveal melanomas are treated successfully with enucleation, either in the primary condition or when they have metastasised. The results of a recent review of 1871 patients treated between 1980 and 2000 showed an 83% 5 year survival for patients with enucleated malignant uveal melanomas. The survival rate was 93% for melanomas less than 10 mm in thickness and 73% for those 10 mm or more. The importance of early detection and treatment is stressed, because the incidence of metastatic disease is directly related to the thickness of the tumour. There are several reports of familial uveal melanoma. The incidence of uveal melanoma in a family context is very low. Since the first description by Silcock in 1892 of the case of a mother and her two daughters affected with this illness, only 51 families have been reported until 1996. There are several reports of simultaneous occurrence of uveal melanoma and breast cancer. Some of them are related to one of the genes already known as predisposing to breast and ovary cancer, the “BRCA2” gene.

Even though there is no demonstration of an implicated gene, many studies suggest that the occurrence of family uveal melanoma is not just a coincidence.

The three clinical cases of histopathologically proven intraocular malignant melanoma involving first generation members of the same family (siblings) are analysed, and their evolution is reported.

CASE REPORTS

Case 1

A 40 years old male patient, with a history of ocular trauma 2 years earlier, presented with a loss of vision in the right eye. He underwent a computed tomography (CT) scan of the orbit which showed an external ocular melanoma with extrascleral invasion. Studies for stratification were negative for malignancy. Given the accessibility of the tumour, a biopsy confirmed a malignant melanoma. An exenteration of the right orbit was performed in April 1997. The histopathological report confirmed a metastasis of a malignant uveal melanoma in the right orbit. A liver ultrasound scan showed an intraocular tumour on the nasal side of the posterior pole of the left eye, in contact with the retina, with 10 mm thickness and probable episcleral infiltration. Her left eye was enucleated on January 1999. Histopathological findings were that of a mixed cell malignant uveal melanoma, with predominance of epithelioid type, with significant scleral invasion.

In November 1997 a right breast nodule was found, measuring 2 cm in diameter. The mammography showed the right breast lump compatible with a primary breast tumour and the biopsy was positive for malignancy. It was finally resected in December 1997. The histopathological report confirmed a breast metastasis of a malignant uveal melanoma with axillary ganglion metastases.

Systemic treatment with polichemotherapy was started in February 1998, based on cisplatin, dacarbazine, and tamoxifen, five series were completed by July 1998. In August 1998 the patient suffered a right coxofemoral pain irradiated to the ipsilateral knee. Pelvic X-rays showed multiple lytic lesions in the pelvis. Bone scintigraphy (September 1998) noted hyperactive areas in the anterior arc of the third rib, pelvic bones, iliac wing, and superior third of the right femoral bone.

She was evaluated because of the risk of a local bone fracture and a surgical fixation was then implemented. Histopathological bone biopsy (November 1998) confirmed bone metastases of a malignant tumour, in accordance with the primary ocular melanoma. She died in December 1998 with a progressive disease.

Case 2

A 39 years old healthy female patient suffered a sudden loss of vision in November 1994 and a left eye retinal detachment was found at the ocular examination. The orbital ultrasound suggested a typical choroidal melanoma on the left eye. The orbital CT scan showed an intraocular tumour on the nasal side of the posterior pole of the left eye, in contact with the retina, with 10 mm thickness and probable episcleral infiltration. Her left eye was enucleated on January 1995. Histopathological findings were that of a mixed cell malignant uveal melanoma, with predominance of epithelioid type, with significant scleral invasion.

In November 1997 a right breast nodule was found, measuring 2 cm in diameter. The mammography showed the right breast lump compatible with a primary breast tumour and the biopsy was positive for malignancy. It was finally resected in December 1997. The histopathological report confirmed a breast metastasis of a malignant uveal melanoma in the right orbit. A liver ultrasound scan showed an intraocular tumour on the nasal side of the posterior pole of the left eye, in contact with the retina, with 10 mm thickness and probable episcleral infiltration. Her left eye was enucleated on January 1999. Histopathological findings were that of a mixed cell malignant uveal melanoma, with predominance of epithelioid type, with significant scleral invasion.

In November 1997 a right breast nodule was found, measuring 2 cm in diameter. The mammography showed the right breast lump compatible with a primary breast tumour and the biopsy was positive for malignancy. It was finally resected in December 1997. The histopathological report confirmed a breast metastasis of a malignant uveal melanoma in the right orbit. A liver ultrasound scan showed an intraocular tumour on the nasal side of the posterior pole of the left eye, in contact with the retina, with 10 mm thickness and probable episcleral infiltration. Her left eye was enucleated on January 1999. Histopathological findings were that of a mixed cell malignant uveal melanoma, with predominance of epithelioid type, with significant scleral invasion.

The patient is now being treated for a second breast tumour (at the remnant of the right breast).

COMMENT

The family presented includes not only three individuals affected with this unusual pathology but they are also three siblings belonging to the same generation, which is even more unusual.

All the cases corresponded to mixed uveal melanomas; in one of these cases (case 3) the patient also had a malignant breast tumour which was diagnosed 2 years before the ocular tumour; in this same case, even though the clinical findings and the imaging tests were suspicious of a choroidal metastasis, the history of two ocular melanomas in her siblings led to the enucleation of the eye, with the subsequent diagnosis of ocular melanoma; the patient is still alive but is being treated for a new breast lump.

Case 2 shows another peculiarity: the patient had been enucleated in January 1995 because of a mixed choroidal melanoma; almost 3 years later she was operated because of a probable primary breast tumour, and the mastectomy specimen showed a breast and axillary compromise of the formerly enucleated ocular melanoma. Nine months later, bone metastases of the primary choroidal melanoma were diagnosed and histologically confirmed. The patient died a few months later.

The first case (case 1) was another unusual one: at the diagnosis, the patient had an externalised ocular melanoma with extrascleral invasion allowing a preoperative diagnosis through a biopsy, even though this procedure is difficult to achieve in most of the ocular melanomas. In this patient an orbital exenteration was done owing to its extension beyond the eye itself. The histopathological report was that of a mixed melanoma (with epithelioid component). Seven months later the patient developed progressive liver metastasis with general deterioration, while under palliative care.

Figure 1 Genealogical family tree. UM = uveal melanoma, LC = lung cancer, BC = breast cancer, Dg = diagnostic age, De = dead age, Dg/De = diagnostic and dead age, y = years, I = first generation, II = second generation, III third generation.
Once again this case denotes the aggressiveness of this tumour in this family.

The genealogical family tree (Fig 1) shows that the siblings’ parents developed malignant tumours: the father was diagnosed with lung cancer at the age of 59 dying a few months later and the mother had breast cancer diagnosed at the age of 49 dying at the age of 57. Also a maternal aunt was diagnosed with lung cancer at the age of 38 and died 2 years later, while another maternal aunt is still alive with breast cancer diagnosed when she was 43. The paternal family history was irrelevant with no malignancies in any of the first or second generation members.

The family tree shows, in the same generation as the affected patients, five more siblings, all of them aged less than 40 years who are currently healthy but may eventually be affected with ocular melanoma or another malignancy; are there any kind of preventive measures we can take for these patients?

Anecdotal reports of cases of ocular melanoma occurring in families with inherited susceptibility to breast cancer owing to brc2 germ line mutations have been previously reported.4 Although germ line brc2 mutations may account for a small proportion of all ocular melanoma cases, there may be additional loci contributing to family aggregation of uveal melanoma and to the family association between ocular melanoma and breast cancer.5 Based on the limited data available, an autosomal dominant mode of inheritance with incomplete penetrance has been postulated to explain the family involvement in uveal melanoma.6

In order to determine some genetic alteration that could account for this family uveal melanoma, blood samples were recently taken from different members of the family (apart from the affected patients still alive).

The family predisposition to uveal melanoma can be a component of a wider predisposition syndrome to cancer, which could explain the high number of tumours affecting these families, with multiple organs involved and the appearance at younger ages than those observed in the general population.7

Because of no previous evidence of family members with uveal melanoma in the genealogical tree (Fig 1), either an environmental factor that remains undisclosed might be suspected or a new mutation may have arisen. Either way careful monitoring of the remaining siblings would be of great interest.

Heredes simplex derritic keratitis after treatment with latanoprost for primary open angle glaucoma

EDITOR,—Medications used to treat glaucoma can cause side effects such as irritation, redness, foreign body sensation, and pain in the eye.8 There are reports that latanoprost has almost no serious side effects. We present two patients treated with latanoprost for primary open angle glaucoma who developed herpes keratitis.

CASE REPORTS

Case 1

A 68 year old female patient presented to the cornea department of the eye clinic, University of Athens, in January 1997. She was being treated for primary open angle glaucoma with latanoprost drops once daily for the past 3 months. Visual acuity in the right eye was 20/40 and in the left 20/20. The intraocular pressure of the left eye was 16 mm Hg. Examination with a slit lamp demonstrated a dendritic ulcer in the right eye (Fig 1). Immunofluorescence studies of the cornea epithelium from the ulcer demonstrated the presence of herpes simplex virus. Latanoprost treatment was discontinued and the patient was placed on antiviral treatment. Two weeks later the keratitis had resolved. The patient was treated again with latanoprost drops once daily in the right eye. Three months later she developed the same problems in the right eye. Latanoprost treatment was discontinued again and antiviral treatment with aciclovir ointments was recommended. There has been no recurrence of the herpetic infection.

Case 2

A 65 year old female presented to the cornea department of the eye clinic, University of Athens, in March 1997. Examination detected epithelial lesions in the centre of the cornea in the right eye (Fig 2) and at 11 clock hours in the periphery of the left eye.9 The patient had had treatment with latanoprost once daily for primary open angle glaucoma during the past months. There was no history of herpes keratitis. Latanoprost treatment was discontinued. The samples of the corneal epithelium from the ulcerated area of both eyes demonstrated the presence of herpes simplex virus, using immunofluorescence. After antiviral treatment, trabeculectomy was carried out in the right eye, when latanoprost treatment was continued in the left eye. After a small period of time, in the right eye—without latanoprost treatment—there was no herpetic infection, while in the left eye—with latanoprost treatment—herpetic infection presented again.

COMMENT

Both patients presented with herpes keratitis during latanoprost treatment. After discontinuing the latanoprost treatment, there was no recurrence of the keratitis.

Latanoprost is a prostaglandin analogue.5,6 It is an esterified predrug inactive until its enzymatic hydrolysis in the cornea, where it becomes a biologically active acid.7 Owing to the biochemical disturbance in the cornea, and the keratopathy confirmed with staining, we can suppose that the presence of latanoprost predisposes the appearance of herpes keratitis.

More cases must be studied before we can reach more specific conclusions.

4 Rácz P, Ruzsonyi MK, Nagy ZT, et al. Maintained intraocular pressure reduction with once-a-day application of a new prostaglandin F2a
Optic neuropathy and cerebellar ataxia associated with a rare missense variation (A14510G) of mitochondrial DNA

CASE REPORT
A 52 year old Japanese man first noted writing tremor, tremor of hands, and mild gait disturbance at the age of 49 years. The patient had a 30 year history of drinking (daily alcohol consumption 125 g) and smoking (daily 20 cigarettes). Physical examination revealed a number of neurological signs including cerebellar ataxia and peripheral neuropathy. The gait was broad based and ataxic. There was mild ataxia of the lower extremities on heel to knee test. Deep tendon reflexes were hyperactive with normal plantar responses. Peripheral nerve conduction velocity studies revealed sensory neuropathy in the upper and lower limbs. Muscular strength and volume of the limbs were normal. Magnetic resonance imaging showed cerebellar atrophy with dilatation of the fourth ventricle (Fig 1). The cerebrospinal fluid was normal without any inflammatory signs. Peripheral blood examination showed mild macrocytic anemia. The serum levels of vitamin B-1, vitamin B-12, and folic acid were within the normal range. Red blood cell folic level was also normal. The patient had unexplained progressive loss of central vision in both eyes since 51 years of age. At presentation, best corrected visual acuity was 0.1 in the right eye and 0.08 in the left. Pupils were round, isocoric, and sluggish to light. There was no blepharoptosis. Ocular motility was normal. Anterior segments and media were clear. Fundoscopy disclosed dilatation of small retinal vessels neighbouring the optic nerve head in both eyes. The nerve heads were not hyperemic but slightly atrophic with temporal pallor. Static and kinetic visual field testing revealed bilateral optic neuropathy and cerebellar ataxia. TI weighted imaging shows cerebellar atrophy with dilatation of the fourth ventricle.

COMMENT
The nucleotide at np 14510 of mtDNA is most usually adenine (14510A). A literature survey reveals that 153 individuals in east Asia, 411 in an aboriginal Siberian population, and 173 in a white population all had 14510A. Only one Australian among 147 individuals of African, Asian, white, aboriginal Australian, and aboriginal New Guinean was reported to have guanine at np 14510 (14510G). The A14510G mutation in the present patient was found in none of 468 Japanese patients with genetically proved LHON, unexplained bilateral optic neuropathy, cerebellar ataxia, or paraopthalmia. A 52 year old Japanese man with bilateral optic neuropathy and cerebellar ataxia, TI weighted imaging shows cerebellar atrophy with dilatation of the fourth ventricle.

Figure 1 Magnetic resonance imaging of the brain in the patient with A14510G mutation of mtDNA. A 52 year old Japanese man with bilateral optic neuropathy and cerebellar ataxia.

Figure 2 Identification of A14510G mutation of mtDNA. (Top) Sequencing result of ND6 in mtDNA in the patient. An A to G substitution at np 14510 replaces Val by Ala in the ND 6 coding sequence of mtDNA. (Bottom) PCR restriction detection for A14510G mutation. U = untreated amplicon; C1, C2, and C3 = negative control; ■ = A14510G variant. The amplicon (243 bp) up 14429 to 14671 of mtDNA is treated with Ala I which recognises allele G and the mutant fragment is digested into 82 bp and 161 bp. The patient’s sample has homoplasmic A14510G mutation. C1, C2, and C3 show only the wild type fragments.
characterised by insidious, chronic progressive optic nerve disease.1 Our patient developed a late onset, insidious bilateral optic neuropathy with mildly atrophic optic nerve heads and tortuous retinal vessels, being compatible with features of LHON.2 Cerebellar ataxia and/or cerebellar atrophy are caused by mutations of mtDNA—for example, large scale deletions or tRNA mutations.3 An extensive review of the literature demonstrates a variety of neurological abnormalities in LHON patients, including cerebellar ataxia and peripheral nerve disorders.4 Our patient had cerebellar ataxia and sensory polyneuropathy, with evidence of cerebellar atrophy on magnetic resonance imaging. Similar neurological complications were rarely found in a LHON family with G11778A mutation.5

Although epigenic factors have been considered for the disease expression and visual outcome of LHON patients in association with mtDNA mutations, it has yet to be proved. A retrospective analysis of LHON sibships has failed to demonstrate a significant deleterious association between tobacco or alcohol consumption and vision loss among individuals at risk with the major mtDNA mutations.6 In the present clinical isolate, it remains unknown whether the malnutritional condition provided a potential risk factor in the clinical manifestation associated with the underlying mtDNA defect. The A14510G mutation of mtDNA is expected to be found in other independent patients especially with unknown optic neuropathy and cerebellar ataxia.

No proprietary interest.

This work was supported by grants in aid for scientific research (12877279, 12671715) from the Japanese Ministry of Education, Science and Culture.

YASUSHI ISASHIKI
Center for Chronic Viral Diseases, Kagoshima University Faculty of Medicine, Kagoshima-shi 890-8520, Japan

NORIO OHBA
Department of Ophthalmology
MASANORI NAKAGAWA
Department of Medicine
SHUJI IZUMO
Center for Chronic Viral Diseases
Correspondence to: Yasushi Isashiki, MD, PhD, Division of Molecular Pathology and Epide-

mology, Center for Chronic Viral Diseases, Ka-
goshima University Faculty of Medicine, Sakura-
gaoka 8-35-1, Kagoshima 890-8520, Japan
yasuyasu@med3.kufm.kagoshima-u.ac.jp

Accepted for publication 27 March 2001

Table 1 Main clinical manifestations of the patients. Their HLA phenotype is also shown

<table>
<thead>
<tr>
<th>Sex</th>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>Female</td>
<td>Female</td>
<td>Female</td>
</tr>
<tr>
<td>Age</td>
<td>49</td>
<td>51</td>
<td>49</td>
</tr>
<tr>
<td>First symptoms</td>
<td>Nausea and anorexia</td>
<td>Upper respiratory infection</td>
<td>Asymptomatic, coincidental finding</td>
</tr>
<tr>
<td>Uveitis</td>
<td>Bilateral AAU</td>
<td>Bilateral AAU with papillitis</td>
<td>Bilateral AAU with retinal vasculitis</td>
</tr>
<tr>
<td>Onset of uveitis</td>
<td>4 months after the nphthalm</td>
<td>Unknown, at the time or possibly prior to the nphthalm</td>
<td>5 months after the nphthalm</td>
</tr>
<tr>
<td>HLA phenotype</td>
<td>A2, A32, B62, B39, Bw6, Cw7, Cw3, DR1, DR4, DR8, DR52, DQ5</td>
<td>A2, B57, Bw4, DR11, DR14, DR52, DQ5</td>
<td>A3, A24, B35, B7, Bw6, Cw4, DR103, DR3, DR52, DQ5</td>
</tr>
</tbody>
</table>

AAU = acute anterior uveitis.
Idiopathic polypoidal choroidal vasculopathy in a patient with atrophic age related macular degeneration

EDITOR,—Since the initial description by Stern and colleagues in 1985,1 the clinical entity now known as idiopathic polypoidal choroidal vasculopathy (IPCV)2 has been increasingly recognised. Although it was initially described in black, middle aged, hypertensive women,3 it is now widely accepted that IPCV can affect men and women of any race, and may represent a significant proportion of patients with age related macular degeneration (AMD).1,4

In this report, the case of a patient with atrophic AMD and evidence of IPCV is presented. To my knowledge, the co-existence of IPCV and atrophic AMD has not been previously reported.

CASE REPORT

An 80 year old white woman presented complaining of sudden deterioration in vision in her left eye. Her ocular history was remarkable for atrophic AMD. Visual acuity was 6/6 in the right eye and counting fingers in the left eye. On fundus examination of the right eye diffuse soft confluent drusen, some calcified, and geographic atrophy (GA) were detected (Fig 1A). In the left, the most striking feature was the presence of marked diffuse cystoid macular oedema (CMO), and a serosanguineous pigment epithelial detachment (PED) associated with large amounts of hard exudates (Fig 1B). Soft and calcified drusen and GA were also present. Fluorescein angiography (FA) disclosed diffuse pooling of dye in the macula in the left eye, and an area of hyperfluorescence corresponding to the PED (Fig 2A). Window defects corresponding to areas of atrophy were detected in both eyes. On indocyanine green angiography (ICG) a choroidal vascular network of polypoidal structures was observed in the left eye (Fig 2B, C).

After informed consent was obtained, focal laser photo coagulation using an argon laser was applied to polypoidal vessels. The parameters used were a laser power of 200 mW, an exposure time of 0.2 seconds, and a spot size of 200 µm. This resulted in resolution of the CMO and PED (Fig 2D) on FA, closure of the choroidal vascular network on ICG (Fig 2B, E), and on a subjective improvement in vision 2 weeks following laser treatment.

COMMENT

IPCV is characterised by the presence of recurrent serosanguineous PEDs and neurosensory retinal detachments (NSRD).1,4 The vascular abnormality underlying the disorder appears to be in the inner choroid. Dilated networks of vessels terminating in aneurysmal dilations or “polyps” can be observed on ICG angiography.4 Polypoidal lesions may arise from the peripapillary region,1,7 macula,1 or peripheral areas.7 Histopathological evaluation of a case of IPCV showed extensive

Figure 2 On fluorescein angiography pooling of dye at the macula was observed in late phases (A). An area of bright hyperfluorescence with late staining, corresponding to the serosanguineous pigment epithelial detachment, was also present (A). On indocyanine green angiography, a network of dilated channels terminating in aneurysmal dilations was observed in early frames of the angiogram (B), and leakage from this vascular network was detected in late frames (C). Laser photo coagulation was applied to cover the vascular network shown in B (inset). Following laser treatment, resorption of the neurosensory detachment of the macula and pigment epithelial detachment was noted on fundus examination and on fluorescein angiography (D). Closure of the polypoidal vessels was confirmed by indocyanine green angiography (E).

fibrovascular proliferation in the subretinal space and within Bruch’s membrane, and a marked lymphocytic infiltration with both B and T cells. Although laser photocoagulation appears to be very effective in preserving visual acuity in patients with IPCV, spontaneous resolution of PEDs and NSRDs can also occur.³

The patient described in this report had evidence of atrophic AMD. However, the diagnosis of IPCV was suspected by the presence of a marked NSRD, extensive and diffuse hard exudates, and a serous angiographic PED. Since it was not clear whether GA was involving the fovea in the left eye, laser treatment was applied in an attempt to achieve resolution of subretinal fluid and hard exudates and in the hope that an associated visual improvement will occur. Rapid resolution of all subretinal fluid was noted and, more spectacularly, resolution of the serosanguineous PED, distantly located from the treated area, was also observed 2 weeks after laser treatment. Although no objective improvement in visual acuity was measured, the patient perceived a gain in vision after the treatment.

In the particular case, the patient made a complete recovery probably as a result of venous bleed. However, many cases of spontaneous orbital haemorrhage reported have required surgical intervention with variable prognoses.¹,³ Ophthalmologists need to be vigilant and carefully monitor these rare cases.

A 48 year old woman awoke with blurred vision and diplopia in her left eye 1 day after percutaneous coronary angioplasty for coronary stenosis. Before angioplasty she received ReoPro (abciximab), a glycoprotein GP IIb/IIIa antagonist. There was no ocular history of note but she was known to have had treatment for hypertension and hypercholesterolaemia. Her medication list included subcutaneous heparin, aspirin, and clopidogrel—a P2 receptor antagonist. On examination, her best corrected visual acuity was 6/9 left 6/6 right. There was no evidence of a relative afferent pupillary defect. There was no desaturation on field examination with a red target in either eye. The left eye was proptosed by 4 mm (Fig 1). There was evidence of limitation in elevation and dextroversion giving vertical and horizontal diplopia in those positions of gaze. Anterior segment was entirely normal but for slight chemosis in those positions of gaze. There was no evidence of optic nerve compression. She had a normal platelet count and clotting screen. She was managed conservatively and made a complete recovery with 6/6 vision in each eye at 4 months after haemorrhage.

COMMENT
This case represents a rare case of spontaneous orbital haemorrhage. Most cases of reported spontaneous orbital haemorrhage appear to have a cause to which the haemorrhage could be referred to like venous anomalies of the orbit such as lymphangiomas, haemangiomas or carotid cavernous fistulas.¹ Other predisposing factors include blood dyscrasias such as Von Willebrand’s disease or haemorrhagic ocular complications associated with the use of systemic thrombolytic agents.³ ⁴ ⁵

The patient in this case report describes her vision and diplopia improving dramatically over 2 weeks. This case is unusual in that there was no evidence of optic nerve compression. She was managed conservatively and made a complete recovery with 6/6 vision in each eye at 4 months after haemorrhage.
Herpes simplex dendritic keratitis after treatment with latanoprost for primary open angle glaucoma

PANTELIS EKATOMATIS

Br J Ophthalmol 2001 85: 1007
doi: 10.1136/bjo.85.8.1007a

Updated information and services can be found at:
http://bjo.bmj.com/content/85/8/1007.2

These include:

References
This article cites 3 articles, 1 of which you can access for free at:
http://bjo.bmj.com/content/85/8/1007.2#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/