Clinicopathological correlation of congenital corneal opacification using ultrasound biomicroscopy

K K Nischal, J Naor, V Jay, L D MacKeen, D S Rootman

Aim: To investigate the correlation between clinical, high frequency ultrasound biomicroscopy (UBM) and, where possible, histological findings in cases of congenital corneal opacification presenting to the departments of ophthalmology, Great Ormond Street Hospital for Children, London, and the Hospital for Sick Children, Toronto, Canada.

Method: 22 eyes of 13 children (age range 3–225 days) with congenitally opaque corneas were examined. UBM was performed using the ultrasound biomicroscope (Allergan-Humphrey). All eyes underwent penetrating keratoplasties (PKP) except five. The host corneas were all sent for histological examination.

Results: The final diagnosis in our series was Peters’ anomaly in nine cases (70%), corneal dystrophy in two cases (15%), and sclerocornea in two cases (15%). The UBM findings changed the clinical diagnosis in five cases (38%). In these five cases histology was available in four and confirmed the UBM diagnosis in each case. In no case of the 13 where histology was available did it contradict the UBM findings. In two cases a hypoechoic region in the anterior stroma was seen on UBM which correlated histologically with absent Bowman’s layer and oedema. In two cases UBM revealed aniridia and in one, congenital aphakia, which was not apparent clinically.

Conclusion: UBM examination is not only very useful in evaluating the clinical diagnosis in congenital corneal opacification, it also acts as a preoperative guide in cases undergoing PKP by detecting keratolenticular and iridocorneal adhesions and other ocular abnormalities such as aniridia and congenital aphakia.

UBM was performed using the ultrasound biomicroscope (Allergan-Humphrey, San Leandro, CA, USA). Scans were performed in all cases except three, during examination under anaesthetic. A lid speculum was used to keep the eyelids open and Tegarol or Viscotears (Ciba Vision) were used as the coupling agent between the transducer head and the patient’s cornea. Scans were performed by two of the authors (LDM and T oronto) using the same protocol. This protocol consisted of a minimum of four scans radial to the limbus and four scans parallel to the limbus at positions 12, 3, 6, and 9 o’clock. At least one scan axial to the estimated position of the pupil was also performed. Scan images were saved onto hard disc and hard copies were also made.

RESULTS

In total, 13 cases were seen with a mean postnatal age of 32.1 days (range 3–225 days). Nine cases presented to the Hospital for Sick Children, Toronto, between December 1997 and March 1999, while four presented to Great Ormond Street Hospital for Children, London, between March 1999 and September 1999.

The clinical cases and results are summarised in Tables 1, 2, and 3.

DISCUSSION

There have been four isolated reports of the UBM findings in sclerocornea and Peters’ anomaly and while one had histology, it was in an adult. We have reported the UBM findings in 13 cases (22 eyes) of congenital corneal opacification. 12 of which presented within 3 weeks of birth. More importantly, we have correlated the UBM findings with the clinical features in all cases and the histological findings in...
Clinicopathological correlation of congenital corneal opacification using ultrasound biomicroscopy

Table 1: Clinical features

<table>
<thead>
<tr>
<th>Case</th>
<th>Sex</th>
<th>Age at presentation</th>
<th>Clinical features</th>
<th>B/L or U/L</th>
<th>Systemic features</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (KL)</td>
<td>F</td>
<td>3 days</td>
<td>Diffuse panstromal corneal clouding (see Fig 1)</td>
<td>B/L</td>
<td>Nil</td>
</tr>
<tr>
<td>2 (CC)</td>
<td>M</td>
<td>5 days</td>
<td>RE complete opaque cornea (see Fig 5)</td>
<td>U/L</td>
<td>CHARGE syndrome</td>
</tr>
<tr>
<td>3 (CC)</td>
<td>20 days</td>
<td>RE opaque enlarged cornea with stromal vascularisation</td>
<td>U/L</td>
<td>Nil</td>
<td></td>
</tr>
<tr>
<td>4 (KP)</td>
<td>F</td>
<td>4 days</td>
<td>B/L dense central corneal opacities with peripheral irido-corneal adhesions</td>
<td>B/L</td>
<td>Orofacial digital syndrome</td>
</tr>
<tr>
<td>5 (MG)</td>
<td>M</td>
<td>4 days</td>
<td>B/L corneal opacification with a central area of relative ectasia posterior</td>
<td>B/L</td>
<td>Nil</td>
</tr>
<tr>
<td>6 (SH)</td>
<td>F</td>
<td>7 days</td>
<td>LE central corneal opacity with irido-corneal touch</td>
<td>U/L</td>
<td>Nil</td>
</tr>
<tr>
<td>7 (VCN)</td>
<td>M</td>
<td>7 days</td>
<td>B/L scleralised corneas temporally</td>
<td>B/L</td>
<td>Nil</td>
</tr>
<tr>
<td>8 (EF)</td>
<td>M</td>
<td>5 days</td>
<td>Opaque corneas</td>
<td>U/L</td>
<td>Nil</td>
</tr>
<tr>
<td>10 (ET)</td>
<td>M</td>
<td>6 weeks</td>
<td>B/L diffuse opaque corneas with partial obstruction</td>
<td>B/L</td>
<td>Nil</td>
</tr>
<tr>
<td>13 (MR)</td>
<td>F</td>
<td>7 days</td>
<td>RE central corneal opacity</td>
<td>U/L</td>
<td>Nil</td>
</tr>
</tbody>
</table>

HCD = horizontal corneal diameter, RE = right eye, LE = left eye, ASD = atrial septal defect, VSD = ventricular septal defect, U/L = unilateral, B/L = bilateral.

UBM findings in posterior polymorphous dystrophy and in congenital hereditary endothelial dystrophy have not previously been reported (see Table 2 and Fig 1). The final diagnosis in our series was Peters' anomaly in nine cases (70%), corneal dystrophy in two cases (15%), and sclerocornea in two cases (15%).

Ultrasound biomicroscopy (UBM) allows visualisation of the anterior segment to a depth of 5 mm with a resolution of approximately 50 µm and gives excellent differentiation of ocular tissues because different tissues produce different amounts of beam backscatter. Using an 80 MHz transducer Pavlin has demonstrated that UBM will differentiate corneal endothelium, Bowman's membrane and stroma but not between Descemet's membrane and the endothelial layer. In our study, using a 50 MHz transducer which is the commonest commercially available UBM, the corneal epithelium and Bowman's layer appear as a single hypoechoic layer. In order to record corneal epithelium and Bowman's layer as two separate layers the transducer must be exactly perpendicular to the corneal surface and the gain must be low. Since the intracorneal structures were not the focus of our examination we did not stringently try to meet these criteria which may explain the discrepancy between our findings and those of Pavlin. Beneath the corneal epithelium/Bowman complex we found the relatively hypoechoic but heterogeneous stroma and the authors described a thickened Bowman's layer (Fig 1A) which was confirmed on histology to be due to focal absences of Descemet's membrane with multilayering of the endothelium case 1 (Fig 1B) and absences of endothelium in case 8; a feature not previously reported to our knowledge.

In seven cases (4–7, 10, 12, 13) where the normal hyperreflectivity of the DM/endothelium was not seen in association with a central posterior corneal defect (Fig 3B, 4A), absence of DM and endothelium was confirmed histologically where available (Fig 3C, 4B).

In four cases (4, 5, 7, 12) an unusual hypoechoic region was seen in the anterior stroma on UBM examination (Fig 3B, 4A). In all these four cases (eight eyes) histology revealed an absence of Bowman's layer with oedema in the region adjacent to where Bowman's layer should have been, together with absence of Descemet's membrane (Fig 3C, 4B). In case 9 Bowman's layer was also found to be histologically absent but no hypoechoic region was seen in the anterior stroma. One possible explanation may be that there was also vascularisation of the stroma and this case had presented after 7 months while all the other cases had presented within 2 weeks of birth.

In case 6 histology revealed a thickened Bowman's layer but there was no obvious UBM correlate. However, hyperplasia or thickened Bowman's layer has previously been described.

In the only clinicopathological correlation to date of clinically diagnosed sclerocornea, the authors described a flattened cornea, diffuse scleralisation of the cornea indicated by hyperreflectivity, abnormal Bowman's layer, thickening of the peripheral cornea, with central posterior excavations involving the posterior stroma, Descemet's membrane and endothelium. Histologically all the UBM findings were confirmed and in addition Bowman's layer was noted to be absent and replaced by a few irregular patches of hyaline material. It is noteworthy that despite the presence of a central posterior corneal defect both on UBM and histologically, a
<table>
<thead>
<tr>
<th>Case</th>
<th>UBM method</th>
<th>Clinical features</th>
<th>UBM features</th>
<th>UBM Dx</th>
<th>PKP</th>
<th>Histological features</th>
<th>Histology Dx</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (KL)</td>
<td>EUA</td>
<td>Normal IOP under GA</td>
<td>Normal anterior segments, irregular corneal thickness with abnormal echogenicity from DM and endothelium. At its greatest corneal thickness was 2.3 mm RE and 2.2 mm LE</td>
<td>Corneal dystrophy</td>
<td>B/L</td>
<td>BE: vacuolization of the basal epithelium with intact Bowman’s layer. Focal absence of DM with multilayering of the endothelium confirmed on EM. Immunostain positive for cytokeratin in endothelium.</td>
<td>Posterior polymorphous dystrophy</td>
</tr>
<tr>
<td>2 (CC)</td>
<td>Awake</td>
<td>Shallow anterior chamber with keratolenticular adhesion and abnormal thick zonules</td>
<td>Peters’ anomaly</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>3 (CC)</td>
<td>EUA</td>
<td>Normal IOP</td>
<td>Shallow anterior chamber with keratolenticular adhesion with cataract and aniridia. Zonules enmeshed with stretched or elongated ciliary processes</td>
<td>Peters’ anomaly</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>4 (KP)</td>
<td>EUA</td>
<td>No evidence of glaucoma</td>
<td>Iridocorneal adhesions with a central posterior corneal defect. Hypoechoic region in the anterior stroma, not able to be explained at time of UBM. Features common to both eyes</td>
<td>Peters’ anomaly</td>
<td>B/L</td>
<td>LE: variable epithelial thickness with complete absence of Bowman’s layer with anterior stromal oedema; complete absence of DM and endothelium. RE: Vacuolation of basal epithelium with variable thickness and irregular arrangement of the stromal lamellae. Centrally deficient DM with endothelial attenuation.</td>
<td>B/L Peters’ anomaly</td>
</tr>
<tr>
<td>5 (MG)</td>
<td>EUA</td>
<td>RE perforated and had emergency PKP</td>
<td>Only LE had UBM. Aniridia and central large posterior corneal defect in the region of which the hypereffectivity of DM seen on UBM was absent. Ciliary processes appeared stretched. Hypoechoic region in anterior stroma similar to case 4.</td>
<td>Peters’ anomaly</td>
<td>B/L</td>
<td>LE: oedema of the basal epithelium, absent Bowman’s layer, and irregular alignment of the stromal lamellae. Centrally marked thinning of stroma with absence of DM and endothelium. Peters’ anomaly – most likely B/L but right host tissue only showed necrosis as it had perforated awaiting PKP.</td>
<td></td>
</tr>
<tr>
<td>6 (SH)</td>
<td>EUA</td>
<td>No evidence of glaucoma</td>
<td>Central iridocorneal adhesion. Normal hyperreflectivity of DM and endothelium not seen centrally but present peripherally</td>
<td>Peters’ anomaly</td>
<td>U/L</td>
<td>LE: variable epithelial thickness, thickened Bowman’s layer with focal absence centrally, marked stromal disorganisation and irregular stromal thickness with a central mound of tissue in posterior cornea, over which DM extremely attenuated and focally absent</td>
<td>Peters’ anomaly</td>
</tr>
<tr>
<td>7 (VCN)</td>
<td>EUA</td>
<td>No evidence of glaucoma</td>
<td>Iridocorneal adhesions mainly central but also some peripheral with shallow AC. Hypereffectivity normally seen at level of DM/endothelium not seen centrally. Hypoechoic area in anterior stroma similar to that seen in cases 4 and 5.</td>
<td>B/L Peters’ anomaly</td>
<td>B/L</td>
<td>RE: oedema of the basal epithelium with absence of Bowman’s layer. Disorganised layering of the stroma and absence of endothelium and DM. LE: epithelial oedema, absent Bowman’s layer, disorganised stromal layering and attenuation of endothelium with absence of DM centrally.</td>
<td>B/L Peters’ anomaly</td>
</tr>
<tr>
<td>8 (EF)</td>
<td>EUA</td>
<td>IOP: Tonopen</td>
<td>No evidence of iridocorneal or keratolenticular adhesions or posterior corneal defects. Cornea thickened at 2.1 mm RE and 2.3 mm LE centrally. Normal hyperreflectivity of DM/endothelium stippled with discrete discontinuations</td>
<td>Corneal dystrophy</td>
<td>B/L</td>
<td>BE: oedema of basal epithelium and subepithelial bursae. Marked stromal scarring with irregular layering and severe endothelial attenuation with almost complete absence. Irregular fibrous thickening of Descemet’s membrane, especially posterior part but complete in some areas.</td>
<td>B/L congenital hereditary Endothelial dystrophy</td>
</tr>
<tr>
<td>9 (NS)</td>
<td>EUA</td>
<td>No evidence of glaucoma</td>
<td>Formed anterior chambers with odd fragments of iris and aphakia. No evidence of posterior corneal defect</td>
<td>Aphakia</td>
<td>B/L</td>
<td>RE: flattened and attenuated epithelium with absent Bowman’s layer. Stroma abnormally organised, thin and vascularised. DM and endothelium could not be identified due to presence of adherent iris LE: in addition to features above subepithelial calcification Primary aphakia Disorganised ant. segment ?? Sclerocornea</td>
<td></td>
</tr>
<tr>
<td>10 (ET)</td>
<td>EUA</td>
<td>No evidence of glaucoma</td>
<td>Shallow ACs with posterior corneal defects with no keratolenticular adhesion but some iridocorneal adhesions seen, centrally especially in right eye.</td>
<td>Peters’ anomaly</td>
<td>LE: autotransplant keratoplasty (elsewhere)</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>11 (TH)</td>
<td>EUA</td>
<td>No evidence of glaucoma</td>
<td>Formed ACs with no corneal defect or iridocorneal or keratolenticular adhesion</td>
<td>Sclero-cornea</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>12 (RM)</td>
<td>Awake</td>
<td>IOP: Perkins</td>
<td>Central thinning of the posterior cornea with keratolenticular and iridocorneal adhesions</td>
<td>Peters’ anomaly</td>
<td>B/L</td>
<td>BE: absence of DM, endothelium and posterior stroma centrally with absent Bowman’s layer</td>
<td>Peters’ anomaly</td>
</tr>
</tbody>
</table>
feature consistent with Peters’ anomaly,17–29 the authors failed to comment on this. Additionally no comment was made about the state of the anterior stroma on UBM8 but if the UBM figure is perused in the report there is a clear area of hypoechogenicity in the anterior stroma; this is identical to our findings on UBM in cases 4, 5, 7, and 12. In this report Bowman’s layer was reported to be absent also histologically.

We suggest that the presence of a hypoechoic layer in the anterior stroma just below the epithelial hypechoic layer may be indicative of absent Bowman’s layer with concomitant oedema as evidenced by the histology of our cases and that of the only other clinicopathological report.8 To our knowledge, this has never been previously reported.

Avitabile et al5 have studied acquired corneal oedemas using UBM; however, all of their studies were at least 30 days after the initial insult, at which stage the opacity of the cornea seen was most probably related to scarring rather than true acute corneal oedema. This would explain why they describe increased hyperreflectivity within the stroma.

The description of UBM in Peters’ anomaly has been reported in three papers10–13 but none had any correlation with histology. Azuara-Blanco et al13 described three eyes of two patients who had had a clinical diagnosis of Peters’ anomaly made without histological confirmation. Their UBM findings were similar to ours with the central posterior corneal defect described as an excavation. We agree with their description of central keratolenticular and iridocorneal adhesions as seen in cases 2, 3, 4, 6, 7, and 12 (Fig 5B). Although case 13 showed iridocorneal adhesions, these were peripheral.

As early as 186730 the clinical condition of defect in Descemet’s membrane giving rise to a central corneal opacification was attributed to defective separation of the lens from surface ectoderm. Peters31 in 1906 emphasised this aetiology and in so doing gave the condition its eponymous name. There is a substantial volume of literature regarding the histology of Peters’ anomaly20–29, 32–33 and less so for sclerocornea.26, 34 Regardless of the author, the hallmark of Peters’ anomaly histologically is the central deficiency of the posterior stroma, hypoechogenicity in the anterior stroma; this is identical to our findings on UBM in cases 4, 5, 7, and 12. In this report Bowman’s layer was reported to be absent also histologically.

Table 3 Cases where diagnosis changed

<table>
<thead>
<tr>
<th>Cases</th>
<th>Eyes</th>
<th>Clinical diagnosis</th>
<th>UBM diagnosis</th>
<th>Histological diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (KL)</td>
<td>B/L</td>
<td>Congenital glaucoma</td>
<td>Corneal dystrophy</td>
<td>Posterior polymorphous dystrophy</td>
</tr>
<tr>
<td>2 (CC)</td>
<td>U/L</td>
<td>Sclerocornea</td>
<td>Peters’ anomaly</td>
<td>N/A</td>
</tr>
<tr>
<td>5 (MG)</td>
<td>B/L</td>
<td>Corneal ectasia</td>
<td>Peters’ anomaly with aniridia</td>
<td>Peters’ anomaly</td>
</tr>
<tr>
<td>7 (VCN)</td>
<td>B/L</td>
<td>Sclerocornea</td>
<td>Peters’ anomaly</td>
<td>Peters’ anomaly</td>
</tr>
<tr>
<td>8 (EF)</td>
<td>B/L</td>
<td>Congenital glaucoma</td>
<td>Corneal dystrophy</td>
<td>Congenital hereditary endothelial dystrophy</td>
</tr>
</tbody>
</table>

Figure 1 (A) The UBM of case 1 shows irregular thickness of the cornea (C) and focal anomalies in the Descemet’s membrane and endothelial echo (D+E) (compare with Fig 2). The pupil is dilated, and so the iris appears shorter than normal (I). The anterior chamber (AC) and the anterior capsule of the lens are also seen. The corneal thickness for the right eye was 2.3 mm centrally and 2.2 mm for the left eye centrally. A diagnosis of corneal dystrophy was made, which was confirmed histologically as being posterior polymorphous dystrophy. (B) Full thickness (×10) cornea section is shown with periodic acid Schiff (PAS) stain. There is normal epithelium (E) and Bowman’s layer (B) but the Descemet’s membrane (DM) is abnormally thin with multilayering of the endothelium seen (En).

Figure 2 UBM of a normal age matched eye. The echogenicity from the epithelial/Bowman’s layer complex (E/B), cornea (C), Descemet’s membrane/endothelial complex (DM/E), anterior capsule of the lens (ACa), lens (L), and iris (I) is shown.
Descemet’s membrane, and endothelium with or without keratolenticular and/or iridocorneal adhesions \(^{17, 20-29}\) with a corresponding central corneal opacity clinically. Interestingly, absence of Bowman’s membrane is also alluded to in a number of reports \(^{21-25} \) but some of these reports clinically describe sclerocornea with a rudimentary presence of DM. \(^{20-25} \)

In sclerocornea there is extension of opaque scleral tissue and fine vascular conjunctival and episcleral tissue into the peripheral cornea obscuring the limbus. \(^{22} \) The severity of scleralisation varies from mild to complete but is usually bilateral in 90% of cases. \(^{23-29} \) Histologically the corneal epithelium shows secondary changes with Bowman’s layer absent in the affected areas \(^{20-25} \) with interstitial vascularisation without inflammation and the stromal collagen fibrils are comparable to scleral collagen in size and organisation. There may be irregular absence of both endothelium and Descemet’s membrane or an abnormally thinned Descemet’s membrane composed of multilaminar basement membrane. \(^{20-25} \)
Clinicopathological correlation of congenital corneal opacification using ultrasound biomicroscopy

At least three developmental genes, PAX 6, REIG 1, and PITX 3, are involved in the development of the anterior segment of the eye. There has been much investigation into the genetics of Peters’ anomaly with controversy over the role of PAX 6, REIG 1, and PITX 1. A mutation in PAX 6 (OMIM 106210) is a homeobox gene responsible for the control of ocular embryogenesis. Mutations in PAX 6 are responsible for human aniridia and it has been suggested that no locus other than chromosome 11p13 has been implicated in aniridia and that PAX 6 may be the only gene responsible.

Kaur et al have reported a case of Peters’ anomaly in which a mutation of REIG 1 gene was found. Mutations in the REIG 1 homeobox gene (OMIM 180500) on chromosome 4q25 have been reported in association with Rieger syndrome. A mutation in the PITX 3 gene (OMIM 602669) on chromosome 10 has been associated with autosomal dominant Peters’ anomaly, congenital cataract and other anterior segment malformations.

We believe that the accurate description of the phenotype of congenital corneal opacification is crucial in the evolution of phenotype-genotype correlation. In our series three of five cases clinically diagnosed as sclerocornea were found on UBM and, in some cases, histologically to have Peters’ anomaly. This suggests that the clinical definition of phenotype in such cases is unreliable and the water is further muddied by the fact that sclerocornea and Peters’ anomaly appear to be conditions whose histological features overlap suggesting they are part of the same spectrum of disease.

It appears that Peters’ anomaly and sclerocornea are most likely conditions in the same spectrum of anterior segment dysgenesis.

UBM was useful in evaluating both the cornea itself as shown above and very useful in revealing associated ocular anomalies as demonstrated most clearly by cases 5, 9, and 13. In case 9 no evidence of a lens could be found either on UBM or posterior segment ultrasound and we feel confident that this is bilateral primary congenital aphakia. Congenital aphakia is extremely rare and when associated with Peters’ anomaly even rarer. Controversy exists as to whether primary aphakia (failure of any lens formation as opposed to secondary type where lens forms but subsequently is resorbed) can occur with an otherwise normal anterior segment or not. Clinically, sclerocornea precluded a thorough examination of the anterior segment, which could only be done using the UBM and this revealed the absence of a lens and aniridia bilaterally (Table 2). This is the first reported case of congenital aphakia in association with clinically diagnosed sclerocornea to our knowledge.

Case 13 demonstrated the presence of Axenfeld-Rieger anomaly with Peters’ anomaly. The scarcity of previous reports may be due to the fact that young infants are difficult to examine and gonioscopy to look for the iridocorneal adhesions is particularly difficult if the only such findings are in the affected eye with the corneal opacification. The use of UBM demonstrated the peripheral iridocorneal adhesions very clearly in our case although the fellow eye also demonstrated Axenfeld-Rieger anomaly very clearly.

Both cases 5 and 9 demonstrated the presence of aniridia which was not readily obvious prior to UBM because of the corneal opacity. Cases of aniridia and Peter’s anomaly have been previously been reported and so has one case of Peters’ anomaly with Wilm’s tumour. The iris in this latter report was described as being very hypoplastic.

At least three developmental genes, PAX 6, REIG 1, and PITX 3, are involved in the development of the anterior segment of the eye. There has been much investigation into the genetics of Peters’ anomaly with controversy over the role of PAX 6, REIG 1, and PITX 1. A mutation in PAX 6 (OMIM 106210) is a homeobox gene responsible for the control of ocular embryogenesis. Mutations in PAX 6 are responsible for human aniridia and it has been suggested that no locus other than chromosome 11p13 has been implicated in aniridia and that PAX 6 may be the only gene responsible.

Kaur et al have reported a case of Peters’ anomaly in which a mutation of REIG 1 gene was found. Mutations in the REIG 1 homeobox gene (OMIM 180500) on chromosome 4q25 have been reported in association with Rieger syndrome. A mutation in the PITX 3 gene (OMIM 602669) on chromosome 10 has been associated with autosomal dominant Peters’ anomaly, congenital cataract and other anterior segment malformations.

We believe that the accurate description of the phenotype of congenital corneal opacification is crucial in the evolution of phenotype-genotype correlation. In our series three of five cases clinically diagnosed as sclerocornea were found on UBM and, in some cases, histologically to have Peters’ anomaly. This suggests that the clinical definition of phenotype in such cases is unreliable and the water is further muddied by the fact that sclerocornea and Peters’ anomaly appear to be conditions whose histological features overlap suggesting they are part of the same spectrum of disease.

It appears that Peters’ anomaly and sclerocornea are most likely conditions in the same spectrum of anterior segment dysgenesis.

UBM was useful in evaluating both the cornea itself as shown above and very useful in revealing associated ocular anomalies as demonstrated most clearly by cases 5, 9, and 13. In case 9 no evidence of a lens could be found either on UBM or posterior segment ultrasound and we feel confident that this is bilateral primary congenital aphakia. Congenital aphakia is extremely rare and when associated with Peters’ anomaly even rarer. Controversy exists as to whether primary aphakia (failure of any lens formation as opposed to secondary type where lens forms but subsequently is resorbed) can occur with an otherwise normal anterior segment or not. Clinically, sclerocornea precluded a thorough examination of the anterior segment, which could only be done using the UBM and this revealed the absence of a lens and aniridia bilaterally (Table 2). This is the first reported case of congenital aphakia in association with clinically diagnosed sclerocornea to our knowledge.

Case 13 demonstrated the presence of Axenfeld-Rieger anomaly with Peters’ anomaly. The scarcity of previous reports may be due to the fact that young infants are difficult to examine and gonioscopy to look for the iridocorneal adhesions is particularly difficult if the only such findings are in the affected eye with the corneal opacification. The use of UBM demonstrated the peripheral iridocorneal adhesions very clearly in our case although the fellow eye also demonstrated Axenfeld-Rieger anomaly very clearly.

Both cases 5 and 9 demonstrated the presence of aniridia which was not readily obvious prior to UBM because of the corneal opacity. Cases of aniridia and Peter’s anomaly have been previously been reported and so has one case of Peters’ anomaly with Wilm’s tumour. The iris in this latter report was described as being very hypoplastic.

At least three developmental genes, PAX 6, REIG 1, and PITX 3, are involved in the development of the anterior segment of the eye. There has been much investigation into the genetics of Peters’ anomaly with controversy over the role of PAX 6, REIG 1, and PITX 1. A mutation in PAX 6 (OMIM 106210) is a homeobox gene responsible for the control of ocular embryogenesis. Mutations in PAX 6 are responsible for human aniridia and it has been suggested that no locus other than chromosome 11p13 has been implicated in aniridia and that PAX 6 may be the only gene responsible.

Kaur et al have reported a case of Peters’ anomaly in which a mutation of REIG 1 gene was found. Mutations in the REIG 1 homeobox gene (OMIM 180500) on chromosome 4q25 have been reported in association with Rieger syndrome. A mutation in the PITX 3 gene (OMIM 602669) on chromosome 10 has been associated with autosomal dominant Peters’ anomaly, congenital cataract and other anterior segment malformations.

We believe that the accurate description of the phenotype of congenital corneal opacification is crucial in the evolution of phenotype-genotype correlation. In our series three of five cases clinically diagnosed as sclerocornea were found on UBM and, in some cases, histologically to have Peters’ anomaly. This suggests that the clinical definition of phenotype in such cases is unreliable and the water is further muddied by the fact that sclerocornea and Peters’ anomaly appear to be conditions whose histological features overlap suggesting they are part of the same spectrum of disease.

It appears that Peters’ anomaly and sclerocornea are most likely conditions in the same spectrum of anterior segment dysgenesis.

UBM was useful in evaluating both the cornea itself as shown above and very useful in revealing associated ocular anomalies as demonstrated most clearly by cases 5, 9, and 13. In case 9 no evidence of a lens could be found either on UBM or posterior segment ultrasound and we feel confident that this is bilateral primary congenital aphakia. Congenital aphakia is extremely rare and when associated with Peters’ anomaly even rarer. Controversy exists as to whether primary aphakia (failure of any lens formation as opposed to secondary type where lens forms but subsequently is resorbed) can occur with an otherwise normal anterior segment or not. Clinically, sclerocornea precluded a thorough examination of the anterior segment, which could only be done using the UBM and this revealed the absence of a lens and aniridia bilaterally (Table 2). This is the first reported case of congenital aphakia in association with clinically diagnosed sclerocornea to our knowledge.

Case 13 demonstrated the presence of Axenfeld-Rieger anomaly with Peters’ anomaly. The scarcity of previous reports may be due to the fact that young infants are difficult to examine and gonioscopy to look for the iridocorneal adhesions is particularly difficult if the only such findings are in the affected eye with the corneal opacification. The use of UBM demonstrated the peripheral iridocorneal adhesions very clearly in our case although the fellow eye also demonstrated Axenfeld-Rieger anomaly very clearly.

Both cases 5 and 9 demonstrated the presence of aniridia which was not readily obvious prior to UBM because of the corneal opacity. Cases of aniridia and Peter’s anomaly have been previously been reported and so has one case of Peters’ anomaly with Wilm’s tumour. The iris in this latter report was described as being very hypoplastic.

At least three developmental genes, PAX 6, REIG 1, and PITX 3, are involved in the development of the anterior segment of the eye. There has been much investigation into the genetics of Peters’ anomaly with controversy over the role of PAX 6, REIG 1, and PITX 1. A mutation in PAX 6 (OMIM 106210) is a homeobox gene responsible for the control of ocular embryogenesis. Mutations in PAX 6 are responsible for human aniridia and it has been suggested that no locus other than chromosome 11p13 has been implicated in aniridia and that PAX 6 may be the only gene responsible.

Kaur et al have reported a case of Peters’ anomaly in which a mutation of REIG 1 gene was found. Mutations in the REIG 1 homeobox gene (OMIM 180500) on chromosome 4q25 have been reported in association with Rieger syndrome. A mutation in the PITX 3 gene (OMIM 602669) on chromosome 10 has been associated with autosomal dominant Peters’ anomaly, congenital cataract and other anterior segment malformations.

We believe that the accurate description of the phenotype of congenital corneal opacification is crucial in the evolution of phenotype-genotype correlation. In our series three of five cases clinically diagnosed as sclerocornea were found on UBM and, in some cases, histologically to have Peters’ anomaly. This suggests that the clinical definition of phenotype in such cases is unreliable and the water is further muddied by the fact that sclerocornea and Peters’ anomaly appear to be conditions whose histological features overlap suggesting they are part of the same spectrum of disease.
elsewhere. Penetrating keratoplasty for such cases is well described,116–18 while there are fewer reports of optical iridectomy and rotational keratoplasty.179 It is noteworthy that one group of authors9 named absence of Bowman’s layer and separately, absence of DM histologically as poor prognosticators; our UBM findings suggest that both these features could be determined preoperatively, thus giving the parents more information before consenting to surgical intervention. Furthermore, other authors60 make the point that in most cases of Peters’ anomaly the clinician has difficulty detecting keratolenticular adhesions hidden behind the dense corneal opacity and that for proper graft centration and wound entry site retilrolumination must be employed.49 By using UBM all surgical planning can be done before the eye is opened.

In summary then we have described the first series of clinical-ultrasonic-pathological descriptions of congenital corneal opacification. We have demonstrated that the clinical description of phenotype may be unreliable, by showing that the clinical diagnosis was changed in five out of 13 cases (38%) by the UBM findings and that in every case but one the UBM finding was confirmed histologically.

In so doing we have described a new sign in high frequency ultrasound of hypoechogenecity of the anterior stroma (subepithelium) which has been shown histologically to be due to absent Bowman’s layer with associated oedema. It is necessary to emphasise that sclerocornea and Peters’ anomaly are part of the same spectrum of pathology. The importance of preoperative assessment and diagnosis in cases of corneal opacity cannot be overstressed and is easily undertaken with UBM even in the awake infant.

Finally, in the present climate of increasing emphasis on studies of phenotype-genotype correlation we feel we have shown that UBM examination is an invaluable adjunct in accurately defining the phenotype.

References

27 Bloch N. The different types of sclerocornea, their hereditary modes and concomitant congenital malformations. J Genet Hum 1964;14:133–72.

58 Hanson IM, Fletcher JM, Jordan T, et al. Mutations at the PAX6 locus are found in heterogeneous anterior segment malformations including Peters’ anomaly. Nat Genet 1994;6:168–73.
Clinicopathological correlation of congenital corneal opacification using ultrasound biomicroscopy
K K Nischal, J Naor, V Jay, L D MacKeen and D S Rootman

doi: 10.1136/bjo.86.1.62

Updated information and services can be found at:
http://bjo.bmj.com/content/86/1/62

These include:

References
This article cites 64 articles, 6 of which you can access for free at:
http://bjo.bmj.com/content/86/1/62#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
- Eye (globe) (708)
- Iris (57)
- Lens and zonules (807)
- Ophthalmologic surgical procedures (1223)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/