Psychophysical characterisation of early functional loss in glaucoma and ocular hypertension

E A Ansari, J E Morgan, R J Snowden

Aim: The psychophysical evaluation of selective cell loss in early glaucoma and ocular hypertension.

Methods: Contrast sensitivity was measured for the detection of luminance modulated gratings at a range of spatial (0.5, 2, 8 c/deg) and temporal (0, 16 Hz) frequency combinations in three groups of age matched patients (primary open angle glaucoma, ocular hypertension, normal controls; n=16). Stimuli of 5° were presented foveally and at 15° along the nasal horizontal meridian under photopic conditions.

Results: Fovea: Compared to the normal group, the thresholds for the glaucoma patients were significantly elevated at all spatial and temporal frequencies (p<0.0001), but this reduction was not significantly different at any particular spatial or temporal frequency (p>0.1). There was no difference in contrast sensitivity between the normals and OHTs (p>0.10). Periphery: The thresholds of the glaucoma patients were elevated compared to the normal controls (p<0.01). The loss of sensitivity was slightly greater at the higher spatial frequencies for both stationary and flickering patterns but this did not reach significance (p=0.09). The contrast sensitivity in normal and OHT groups was not significantly different (p>0.10).

Conclusions: In early glaucoma, the reduction in contrast sensitivity to stimuli which isolate the magnocellular pathway (0.5 c/deg, 16 Hz) was not significantly different compared with the reduction in contrast sensitivity to stimuli that isolate the parvocellular pathway. These findings are not consistent with the hypothesis that the magnocellular pathway is selectively damaged in early glaucoma.

Histological studies in the early stages of both human and experimental glaucoma have shown a selective reduction in the proportion of larger retinal ganglion cells. Since magnocellular cells tend to be larger at every eccentricity, it is reasonable to conclude that this would translate into a selective loss of magnocellular function. The important clinical implication is that the selective evaluation of magnocellular function should facilitate the earlier detection of ganglion cell loss in glaucoma, possibly before the development of field defects as detected by available clinical perimetric tests. Although a number of studies have selectively tested either magnocellular or parvocellular pathways in early glaucoma, selective damage to the magnocellular pathway has not been a robust and consistent finding. When magnocellular (M) and parvocellular (P) functions are assessed using a battery of tests a selective deficit in magnocellular function does not appear to be a consistent feature of early glaucoma.

The discrepancy between the anatomical data and psychophysical data questions the anatomical basis for selective cell death. A key point in extrapolating changes in cell size distributions to changes in the proportions of particular classes of cells has been the assumption that the normal relation between cell size and cell type is preserved in disease. Recent anatomical data in the experimental primate glaucoma model suggest that this may not be the case since parvocellular and magnocellular retinal ganglion cells shrink before cell death, the magnitude of shrinkage was similar in both cell types and would be sufficient to account for the apparent selective loss of larger retinal ganglion cells.

The conflicting results from psychophysical studies may stem from their use as diagnostic tools rather than in the detailed evaluation of magnocellular and parvocellular function. The evaluation of the relative damage to the two pathways should be done using tests with minimal bias in contrast with the rationale for the development of selective tests of retinal ganglion cell function for the diagnosis of glaucomatous damage. Since the characterisation of the magnocellular and parvocellular pathways in healthy eyes is conventionally performed using temporal and spatially modulated sine wave gratings as test stimuli, these can be applied to the assessment of these pathways in glaucoma patients. The gratings should be presented over a range of stimulus contrasts and spatial frequencies to span the dynamic range of the two pathways since the analysis of selected parts of the contrast sensitivity function for either pathway is unlikely to provide a full characterisation of the damage to any particular pathway. For example, a recent detailed study of the differences in the cut-off spatial frequencies at reduced sensitivities showed a greater change for the magnocellular pathway, which is not necessarily a result of selective damage to the magnocellular pathway but simply a reflection of the expected difference in the contrast sensitivity for the two pathways at differing sensitivities.

In view of the recent anatomical findings and the need to clarify the results of previous psychophysical studies, we performed psychophysical tests in normal and glaucoma patients to determine relative damage to the magnocellular and parvocellular pathways. The stimuli were designed to isolate as much as possible magnocellular and parvocellular pathways. Gratings were presented at a range of spatial and temporal frequencies to construct full contrast sensitivity functions for our different patient groups and in such a way to minimise any bias in testing. We hypothesise that a selective loss of magnocellular function would be manifest as a relatively greater reduction of sensitivity to gratings with higher temporal and lower spatial frequencies.

METHODS

Informed consent was obtained from all subjects in accordance with the tenets of the Declaration of Helsinki and the
guidelines of the Bro Taf ethics committee. Primary open angle glaucoma (POAG) and ocular hypertensive (OHT) patients were recruited from the university hospital glaucoma clinic and normal controls from the university optometry clinic.

Contrast sensitivity (the reciprocal of contrast threshold) was measured for the detection of luminance modulated sinusoidal gratings with a variety of spatiotemporal frequency combinations presented in either the central or peripheral visual field.

Patients
Sixteen patients with early to moderate glaucomatous visual field loss, 16 age matched normal control subjects, and 16 age matched patients with OHT were evaluated. One eye, which fulfilled the inclusion criteria, was tested in each patient. In the glaucoma group, the mean deviation on automated Humphrey field analyser perimeter (San Leandro, CA, USA) using the central 24-2 threshold test ranged between −0.70 dB to −6.4 dB with corresponding thinning of the neuroretinal rim by established criteria. All patients had a corrected Snellen visual acuity of at least 20/30 achieved with less than plus or minus 4 dioptres (D) of spherical equivalent and less than 2 D of astigmatism. The 20/30 achieved with less than plus or minus 4 dioptres (D) of 0.1 is therefore equivalent to 20 dB of attenuation.

Stimuli
Stimuli were produced by a Cambridge Research Systems VSG waveform generator housed in a PC computer. They were displayed on a CRT (Joyce Electronics, Cambridge, UK). The display had a white phosphor (P4), a mean luminance of 120 cd/m² and was refreshed at 100 Hz. The output voltage from the VSG was gamma corrected to ensure linearity up to 90% contrast. An adjustable target was presented to aid fixation.

All stimuli had a sinusoidal luminance profile along the horizontal axis and were presented within a window of 5 degrees, the edges of which were attenuated using a cosine ramp subtending 0.75 degrees. The rest of the screen (16 by 16 degrees) was kept at the mean screen luminance. Each grating was presented for 300 ms at its full contrast and was linearly ramped on and off over a period of 100 ms to ensure that the stationary stimulus did not have any high temporal frequency artefacts. All stimulus contrasts are Michaelson contrasts:

\[
\frac{\text{Lum}_{\text{new}} - \text{Lum}_{\text{old}}}{\text{Lum}_{\text{new}} + \text{Lum}_{\text{old}}} \]

and are presented in dB relative to a contrast of 1. A contrast of 0.1 is therefore equivalent to 20 dB of attenuation.

Procedure
The display was viewed monocularly and the contralateral eye was occluded with an eye patch. The subject’s head was stabilised using a headrest at a viewing distance of 57 cm. All patients were allowed enough time to adapt to the ambient testing conditions in the laboratory. All measurements were completed in one or two sessions, each lasting 20–30 minutes.

Experiments were performed with central or eccentric fixation. For foveal viewing three spatial frequencies (0.5, 2, and 8 c/deg) were tested at each of two temporal frequencies (0 and 16 Hz). These combinations were chosen to ensure that the lowest spatial and high temporal frequency would best detect lesions of the magnocellular pathway.

For evaluation of the peripheral visual field, gratings were presented 15 degrees nasal to fixation on the horizontal meridian, which corresponded to a region of visual field defect on Humphrey perimetry in all patients. On the pattern deviation plot, fewer than 25% of points were depressed below the 5% level and fewer than 10 points are depressed below the 1% level. No point in the central 5 degrees had a sensitivity of less than 15 dB. The same combinations of spatial and temporal frequencies were tested with the exception of the 8 c/deg grating, which was omitted because of the low resolution acuity at this eccentricity.

At each location, contrast sensitivity was determined using a binary choice procedure in which the grating presentation was randomly assigned to one of two presentation intervals. The contrast of the grating was adjusted via an adaptive staircase procedure (QUEST), in which contrast was increased following incorrect responses and decreased following correct responses, converging to a performance level of 81.6% correct. The initial test contrast was 10 dB above threshold based upon pilot data.

Each trial consisted of two intervals separated by 250 ms. In one interval (randomly chosen) a grating was presented while in the other the screen remained blank. The procedure continued for 32 trials. For each set of trials only a single combination of spatial and temporal frequency was tested. The ordering of the various spatial and temporal frequencies was randomised from observer to observer. All tests on foveal vision were completed before any tests of eccentric vision. Statistical analysis for normally distributed data, unless otherwise stated, was by a two way analysis of variance (ANOVA).

RESULTS
The POAG and OHT groups both comprised 10 females and six males. The normal (control) group comprised seven females and nine males (Table 1). The mean age for each group (means (SD)) were POAG 68.1 (5.1), OHT 59.3 (13.5), controls 61.1 (9.00) and did not differ significantly (p=0.2). In the glaucoma group the mean deviation on automated Humphrey field analyser perimeter (San Leandro, CA, USA) using the central 24–2 threshold test was 2.3 (1.9), range −0.70 dB to −6.4 dB.

Foveal presentation
Contrast sensitivities for stationary and flickering gratings are shown in Figure 1. For all groups the results are consistent with previous work in showing bandpass characteristics for

<table>
<thead>
<tr>
<th>Table 1 Patient details</th>
<th>Group</th>
<th>Male:female</th>
<th>Age range (years)</th>
<th>Mean age (years)</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal (n=16)</td>
<td>9:7</td>
<td>41–74</td>
<td>61.1</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>OAG (n=16)</td>
<td>6:10</td>
<td>59–74</td>
<td>68.1</td>
<td>5.1</td>
<td></td>
</tr>
<tr>
<td>OHT (n=16)</td>
<td>6:10</td>
<td>40–75</td>
<td>59.3</td>
<td>13.5</td>
<td></td>
</tr>
</tbody>
</table>

Downloaded from http://bjo.bmj.com/ on June 20, 2017 - Published by group.bmj.com
Compared to the normal group, the thresholds for the glaucoma patients were significantly reduced at all spatial (p<0.0001) and temporal frequencies (p<0.0001), but this reduction was not significantly different at any particular spatial or temporal frequency (p>0.1).

There was no difference in contrast sensitivity between the normals and OHTs (p>0.10). However, Figure 2 shows that normals and OHTs showed a greater difference with stationary compared with flickering gratings (p=0.07).

Peripheral presentation
Data for one normal control, three glaucoma patients, and two OHT patients were not included in the analysis since they could not detect the stimulus even at full contrast. Contrast sensitivities for the remaining observers in each group are plotted in Figure 2. The thresholds of the glaucoma patients are reduced compared with the normal controls (p<0.01). The loss of sensitivity was greater at the higher spatial frequencies for both stationary and flickering patterns but this was not statistically significant (p=0.09). There was no significant reduction in contrast sensitivity between normal and OHT groups (p>0.10).

Since a selective loss of magnocellular cell function should produce greater loss of sensitivity for low spatial, high temporal frequencies, we compared the loss of sensitivity under this condition (0.5 c/deg, 16 Hz)—with gratings least likely to activate magnocellular cells (and most likely to isolate parvocellular cell function)—with spatial and temporal frequencies as of 8 c/deg, 0 Hz for the fovea and 2 c/deg, 0 Hz for the periphery. At the fovea we found a slightly greater loss for the latter condition (6.88 dB; t test p<0.01) than the former (5.63 dB; t test p<0.05). In the periphery, the low spatial, high temporal conditions produced less loss (4.3 dB; t test p<0.05) than the high spatial low temporal condition (6.15 dB; t test p<0.01).
compared to controls, which was interpreted as evidence for selective loss of magnocellular cells in glaucoma. Figure 3 illustrates how their findings are also consistent with non-selective damage to both magnocellular and parvocellular pathways. Contrast sensitivity functions (CSF) have been plotted for stimuli that are either stationary [open circles] or counterphase flickered [solid circles] observed by a single, representative (non-glaucomatous) observer. (A) shows that with logarithmic axes, the slope for the loss of sensitivity at high spatial frequencies differs for the two stimuli. (B) shows matching slopes for the two stimuli when plotted on linear axes. (C) The change in the ratio of acuity for moving and stationary stimuli arises from the relative shape of the contrast sensitivity functions for these stimuli in the normal eye.

Figure 3 Graphs demonstrating that non-selective loss can account for the change in contrast sensitivity ratios between the M and P cell pathways. Contrast sensitivity functions (CSF) have been plotted for stimuli that are either stationary [open circles] or counterphase flickered [solid circles] observed by a single, representative (non-glaucomatous) observer. (A) shows that with logarithmic axes, the slope for the loss of sensitivity at high spatial frequencies differs for the two stimuli. (B) shows matching slopes for the two stimuli when plotted on linear axes. (C) The change in the ratio of acuity for moving and stationary stimuli arises from the relative shape of the contrast sensitivity functions for these stimuli in the normal eye.

It is possible that the failure to find any selective damage reflects the difficulties associated with isolation of the functional properties of the magnocellular and parvocellular pathways. Partly this is due to the overlapping function of the two pathways since the parvocellular pathway conveys information about the motion of moderate and high spatial frequency targets. Clinical tests of magnocellular function—for example, using moving lines or dots—may be complicated by the broad Fourier spectra of these stimuli which would stimulate both magnocellular and parvocellular cells. Further difficulties come from the convergence of the two pathways at the level of the striate cortex. Electrophysiological measures of cortical function may provide better separation of the two pathways. Indeed, pseudorandomly stimulated flash visual evoked potentials (VEP) suggest a preferential loss of magnocellular cells in early glaucoma with the parvocellular component declining later on in the disease. The degree to which these techniques separate the pathways requires further confirmation but these data suggest that selectivity may have a greater effect at the cortical compared with the thalamic level.

In clinical terms, non-selective RGC loss does not undermine selective testing of those pathways with reduced redundancy. Thus, frequency doubling perimetry (FDP) is sensitive to deficits in an undersampled, non-linear subset of magnocellular cells, the My cells, and has high sensitivity and specificity for the discrimination of normal from glaucomatous eyes. Bistratified RGCs comprise 1% of RGCs in the central retina and mediate the blue-yellow signal. Reduced redundancy in this population of cells may explain the ability of blue on yellow perimetry to detect visual field loss earlier than conventional perimetry.

Non-selective cell death has implications for our understanding of the events that lead to retinal ganglion cell death. One interpretation of non-selective cell loss is that cell shrinkage occurs in glaucoma to account for the shift in cell soma size distributions in the disease. In the primate model of glaucoma, RGC shrinkage is characterised by reduction in size of the dendritic tree, cell soma, and axon to a similar extent in both magnocellular and parvocellular cells. This is consistent with glaucomatous retinal ganglion cell damage being diffuse and having widespread effects on the cells before cell death. Since these cells are at risk of cell death they may benefit from measures aimed at cell rescue. How these cells...
might be identified physiologically is unclear. Reduced dendritic arbor could translate into a smaller receptive field though it would be difficult to predict the behaviour of the remaining dendrites.

In summary, we have not found evidence for selective damage to the magnocellular pathway in early glaucoma. While complete isolation of magnocellular function may not be possible, our data suggest that selective magnocellular damage, if it does occur, is not a significant effect.

ACKNOWLEDGEMENTS

Supported by the International Glaucoma Association, UK and Pharmac and Upjohn, UK.

Presented in part at the Association for Research in Vision and Ophthalmology (ARVO), Fort Lauderdale, 2000.

Proprietary interest: nil.

Authors’ affiliations

E A Ansari, J E Morgan, Department of Ophthalmology, University of Wales College of Medicine, Cardiff, UK

R J Snowden, Department of Psychology, Cardiff University, Cardiff, UK

REFERENCES

www.bjophthalmol.com
Psychophysical characterisation of early functional loss in glaucoma and ocular hypertension
E A Ansari, J E Morgan and R J Snowden

Br J Ophthalmol 2002 86: 1131-1135
doi: 10.1136/bjo.86.10.1131

Updated information and services can be found at:
http://bjo.bmj.com/content/86/10/1131

These include:

References
This article cites 39 articles, 12 of which you can access for free at:
http://bjo.bmj.com/content/86/10/1131#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

Angle (1006)
Glaucoma (988)
Intraocular pressure (1002)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/