Iris nodules associated with infectious uveitis

T D Myers, J R Smith, A K Lauer, J T Rosenbaum

We present three patients with iris nodules found in association with uveitis in which a specific infectious organism was identified. In each case, the uveitis was initially diagnosed as non-infectious. In one case, the isolated organism was a *Corynebacterium* species, an organism that has not previously been reported in association with iris nodules. Additionally, a literature review was conducted using Medline to identify previous reports of infectious uveitis with iris nodules. Our cases and the published literature show that a thorough history, detailed examination, and the use of appropriate diagnostic techniques can be invaluable in the prompt and accurate recognition of infection as a cause of uveitis with iris nodules.

METHODS

We examined the clinical database maintained at the uveitis service of the Oregon Health and Science University (OHSU) over a 16 year period from September 1985 to November 2001, to identify cases of infectious uveitis with iris nodules. Of a total of 1353 patients with uveitis, three patients (three eyes) were diagnosed with this condition. In other words, the prevalence of uveitis with iris nodules for our tertiary referral uveitis practice was 0.22% of all uveitis patients. One of these cases has been previously reported in the form of a photographic essay. From the medical records of these three patients we recorded clinical information which included mode of presentation, method of diagnosis, the responsible organism, source of infection, treatment, and final outcome. A Medline search (key words: iris nodules, iris mass, iris nodules and uveitis, iris mass and uveitis, uveitis, and nodules) was performed to identify additional cases and collect similar information. This search included the entire memory of the Medline database from 1966 up to November 2001.

RESULTS

Case 1

An 81 year old white male was referred to the uveitis service at OHSU with a 3 week history of a left granulomatous uveitis with an iris mass. The uveitis had been refractory to topical corticosteroid therapy. Ocular history was remarkable for coronary bypass and aortic valve replacement surgery with a bovine valve 4 months before the onset of the uveitis. His postoperative course had been complicated by a sternal wound infection from which a *Candida* species had been cultured. The infection had been treated with intravenous antifungal agents. He had noted no drainage of the wound for 2 months but reported fevers and chills over the 4 weeks before his referral.

On examination, his best corrected visual acuity was 20/20 in the right eye and 20/40 in the left eye. Intraocular pressures were 10 mm Hg and 26 mm Hg in the right and left eyes, respectively. Examination of the right eye was normal, but the left eye had 2+ cells in the anterior chamber with keratic precipitates and a large, fluffy iris nodule (Fig 1). There were 1+ vitreous cells and vitreous membranes in the left eye, affording a hazy view of the fundus.
A metastatic infection was suspected and an anterior chamber paracentesis, with aspiration of a portion of the iris nodule, was performed. The patient was admitted to the hospital for blood cultures and parenteral antibiotics. He was found to be febrile on admission. While blood cultures were negative, the aqueous aspirate grew *Candida albicans* and treatment was begun with intravenous fluconazole. A culture of the sternotomy wound was also positive for *C. albicans*. Further tests including a transoesophageal echocardiogram, computed axial tomogram scan of the chest, and tagged white blood cell scan failed to reveal any other source of infection. After treatment with fluconazole, the patient’s fevers resolved, but best corrected visual acuity in the left eye worsened to 20/100 and increased vitreous inflammation was noted. A left pars plana vitrectomy with injection of intraocular amphotericin B. Cultures of the vitreous fluid grew *C. albicans*. Post-operatively, his left visual acuity improved to 20/25 and intraocular pressure stabilised at 17 mm Hg. The iris nodule and anterior chamber inflammation were resolved after 3 months of treatment (Fig 2).

Case 2

A 41 year old white female was diagnosed with uveitis in her right eye and treated for 12 days with topical and oral corticosteroid without improvement. She developed elevated intraocular pressure which responded to a combination of topical timolol, brimonidine, and dorzolamide. Results of laboratory studies, including a purified protein derivative skin test, complete blood count, erythrocyte sedimentation rate, and chest x ray, were normal. Her medical history was unremarkable and she had no systemic symptoms. She was referred to the OHSU uveitis service for further evaluation. Her best corrected visual acuity on examination was 20/25 on the right and 20/20 on the left. Right intraocular pressure was controlled at 13 mm Hg. On slit lamp examination of the right eye, there were keratic precipitates, 3+ aqueous cell, and a heavy aqueous flare with fibrin clot formation. There were five discrete nodules on the inferior iris (Fig 3A and B). The posterior pole was normal. Examination of the left eye was normal.

After an anterior chamber paracentesis, she was admitted to the hospital to search for a systemic source for a suspected intraocular infection. Cultures of the aqueous aspirate grew a *Corynebacterium* species and she commenced treatment with vancomycin. No systemic source of infection was identified, and the patient was discharged on intravenous vancomycin. After 2 months of therapy, including topical corticosteroid, her symptoms had resolved and her vision had returned to 20/15 in the right eye (Fig 4).

Three years later, the patient had a recurrence of her right iritis without iris nodules. She had since moved from our referral area. No cultures were taken, and her disease was treated with topical corticosteroid and a cycloplegic. There was complete resolution of her symptoms and signs within 4 weeks.

Case 3

A 60 year old white female noted 3 weeks of left eye pain, redness, and photophobia. Her symptoms had worsened on topical and periocular corticosteroid therapy which had been commenced for a presumed non-infectious left anterior uveitis. Further, after 1 week of corticosteroid therapy she
developed a large white iris nodule which appeared to arise from the iris stroma (Fig 5). She had a medical history remarkable for coronary bypass surgery with mitral valve replacement, performed 6 months before her referral. She was referred to the uveitis clinic at OHSU for further evaluation. On specific questioning she described recent onset of arthralgia in her right first metatarsal with associated redness and swelling.

Her visual acuity was 20/40 in the left eye and left intraocular pressure was normal at 13 mm Hg. On slit lamp examination she was noted to have fine keratic precipitates, 1+ aqueous cell, and a large iris nodule in the left anterior segment. Left fundus examination was normal. Examination of the right eye was likewise normal. She also had a splinter haemorrhage on the nail bed of her right index finger, and a tender nodule on her right forearm.

Anterior chamber paracentesis was performed, and the patient was admitted to the hospital. The aqueous culture was positive for Actinobacillus actinomycetemcomitans, an organism known to cause infectious endocarditis. Skin biopsy of the nodule on the right forearm showed an inflammatory pattern consistent with infection, but no organisms were identified. After treatment with parenteral antibiotics for 6 weeks, her systemic and ophthalmic findings resolved and her final left visual acuity was 20/40 (Fig 6).

DISCUSSION

The differential diagnosis of iris nodules in the setting of uveitis is presented in Table 1.

Infectious uveitis is an uncommon cause of iris nodules. Most cases of uveitis with iris nodules can be attributed to non-infectious entities, such as sarcoidosis, which are generally responsive to immunosuppressive therapy. While aetiologies of uveitis such as infection and malignancy are rare, they represent two important subsets of diseases that respond poorly to conventional immunosuppressive therapy. Indeed, many patients with iris nodules and infectious uveitis may have worsening of their disease if treated with immunosuppressive agents. On the other hand, early diagnosis and appropriate therapy may lead to more favourable outcomes. Thus, the importance of careful diagnosis cannot be overemphasised. Careful history taking, including a thorough review of systems to identify any systemic infectious illness, is a key part of making the correct diagnosis early in the patient’s disease course.

Table 1 outlines recently reported causes of infectious uveitis with iris nodules.

CASES FROM THE LITERATURE

An additional 25 cases of infectious uveitis with iris nodules from the published literature were identified through a Medline search, and these reports reviewed. Anterior chamber paracentesis is an underutilised investigation. However, most reports offered little qualitative description of the iris nodules. There was nearly equal prevalence of single and multiple nodules among the reviewed cases. A wide variety of bacterial and fungal species were reported to cause infectious uveitis with iris nodules.
<table>
<thead>
<tr>
<th>First author (year)</th>
<th>Organism</th>
<th>Systemic source</th>
<th>Method of diagnosis</th>
<th>Treatment</th>
<th>Outcome (final visual acuity if available)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rosen PH (1990)</td>
<td>M tuberculosis</td>
<td>No</td>
<td>Presumptive diagnosis</td>
<td>Systemic antibiotics</td>
<td>Recovery</td>
</tr>
<tr>
<td>Gain P (1994)</td>
<td>M tuberculosis</td>
<td>No</td>
<td>Iridecotmy</td>
<td>Systemic antibiotics</td>
<td>Non-compliance, poor outcome</td>
</tr>
<tr>
<td>Walker C (1967)</td>
<td>Tuberculosis</td>
<td>No</td>
<td>Presumptive diagnosis</td>
<td>Systemic antibiotics</td>
<td>Recovery</td>
</tr>
<tr>
<td>Rosenbaum PS (1998)</td>
<td>M avium–intracellulare complex</td>
<td>Yes</td>
<td>Anterior chamber paracentesis, skin ulcer scrapings</td>
<td>Systemic antibiotics, topical steroid</td>
<td>Recovery then relapse with enucleation</td>
</tr>
<tr>
<td>Michelston JB (1979)</td>
<td>M leprae</td>
<td>Yes</td>
<td>Anterior chamber paracentesis</td>
<td>Systemic antibiotics, topical and subconjunctival steroids</td>
<td>Recovery</td>
</tr>
<tr>
<td>Messmer EM (1998)</td>
<td>M leprae</td>
<td>Yes</td>
<td>Anterior chamber paracentesis</td>
<td>Systemic antibiotics</td>
<td>Recovery</td>
</tr>
<tr>
<td>Daxecker</td>
<td>M leprae</td>
<td>Yes</td>
<td>Skin biopsy</td>
<td>Systemic antibiotics, topical steroid</td>
<td>Recovery</td>
</tr>
<tr>
<td>Stokes DJ (1992)</td>
<td>P acnes</td>
<td>Yes</td>
<td>Iridecotmy</td>
<td>Systemic antibiotics, sub-conjunctival and topical antibiotics</td>
<td>Recovery (20/20)</td>
</tr>
<tr>
<td>Patel AS (1994)</td>
<td>Fusarium spp</td>
<td>Yes</td>
<td>Vitreous aspirate</td>
<td>Intravitreal, topical, and systemic antibiotics</td>
<td>Enucleation</td>
</tr>
<tr>
<td>Myers TD (2002)</td>
<td>A actinomycetemcomitans</td>
<td>Presumed</td>
<td>Anterior chamber paracentesis</td>
<td>Systemic antibiotics</td>
<td>Recovery (20/40)</td>
</tr>
<tr>
<td>Cunningham ET (1998)</td>
<td>C immitis*</td>
<td>Yes</td>
<td>Skin biopsy</td>
<td>Systemic antibiotics</td>
<td>Unknown</td>
</tr>
<tr>
<td>Culter JE (1978)</td>
<td>C immitis*</td>
<td>Yes</td>
<td>Anterior chamber paracentesis</td>
<td>Intravitreal and intracameral antibiotics</td>
<td>Enucleation</td>
</tr>
<tr>
<td>Moorthy RS (1994)</td>
<td>C immitis* [3 patients]</td>
<td>No</td>
<td>Anterior chamber paracentesis, iridectomy</td>
<td>Systemic antibiotics</td>
<td>Enucleation [1 patient], undergoing therapy [2 patients]</td>
</tr>
<tr>
<td>Stone JL (1993)</td>
<td>C immitis*</td>
<td>Yes</td>
<td>Vitreous aspirate</td>
<td>Systemic and intraocular antibiotics</td>
<td>Enucleation</td>
</tr>
<tr>
<td>Stern JH (2001)</td>
<td>C albicans</td>
<td>Yes</td>
<td>Vitrectomy/vitreous aspirate, skin culture</td>
<td>Systemic antibiotics, vitreotomy, topical steroid</td>
<td>Recovery (hand movements)</td>
</tr>
<tr>
<td>Myers TD (2002)</td>
<td>C albicans</td>
<td>Yes</td>
<td>Anterior chamber paracentesis, vitreous aspirate</td>
<td>Systemic antibiotics, vitreotomy</td>
<td>Recovery (20/25)</td>
</tr>
<tr>
<td>Charles NC (1992)</td>
<td>C neoformans</td>
<td>Yes</td>
<td>Anterior chamber paracentesis</td>
<td>Vitreotomy, intravitreal antibiotics</td>
<td>Enucleation</td>
</tr>
<tr>
<td>Shyong MP (2000)</td>
<td>Penicilium spp</td>
<td>No</td>
<td>Anterior chamber paracentesis</td>
<td>Topical and intracameral antibiotics</td>
<td>Recovery</td>
</tr>
<tr>
<td>Myers TD (2002)</td>
<td>Corynebacterium spp</td>
<td>No</td>
<td>Anterior chamber paracentesis</td>
<td>Systemic antibiotics</td>
<td>Recovery</td>
</tr>
<tr>
<td>Gupta K (1986)</td>
<td>Possible HSV</td>
<td>No</td>
<td>Iris biopsy</td>
<td>Topical steroid</td>
<td>Recovery</td>
</tr>
<tr>
<td>Gass JDM (1973)</td>
<td>Possible HSV</td>
<td>No</td>
<td>Iris biopsy</td>
<td>Topical steroid</td>
<td>Recovery (20/70)</td>
</tr>
</tbody>
</table>

*Additional reports in the literature published before dates covered by Medline search.
Iris nodules associated with infectious uveitis

Table 2 Differential diagnosis of iris nodules with uveitis

<table>
<thead>
<tr>
<th>Aetiology</th>
<th>Diagnostic clues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sarcoïdosis</td>
<td>Usually a bilateral chronic uveitis with mutton fat keratic precipitates. 11% of cases have Koepppe and/or Bussaque nodules.1,23 Excision of nodules may lead to clinical improvement.23</td>
</tr>
<tr>
<td>Fuchs' heterochromic iridocyclitis</td>
<td>Characteristic stellate keratic precipitates with or without marked heterochromia. 20–30% of cases have small, transparent iris stromal and pupillary border nodules. Nodules seen most often in darkly pigmented individuals.1,22</td>
</tr>
<tr>
<td>Infectious uveitis</td>
<td>Usually associated with a history of systemic infectious disease or systemic symptoms such as fever and chills. May have large fluffy or creamy looking nodules. Responds poorly to corticosteroid treatment.</td>
</tr>
<tr>
<td>Multiple sclerosis</td>
<td>Granulomatous anterior and/or intermediate uveitis with iris nodules. History will often reveal neurological symptoms.4</td>
</tr>
<tr>
<td>Vogt-Koyanagi-Harada syndrome</td>
<td>Prominent bilateral posterior segment inflammation often seen with poliosis, vitiligo, and alopecia. May have irid nodules and anterior chamber inflammation during the uveitic phase of the disease.6</td>
</tr>
<tr>
<td>Metastatic neoplasm</td>
<td>Greyish white translucent nodules in the setting of malignancy elsewhere. May have other features such as hypopyon, hyphaema, secondary glaucoma, and iris atrophy.54</td>
</tr>
<tr>
<td>Post-transplant lymphoproliferative disorder</td>
<td>Usually seen in immunosuppressed children and is often bilateral. Associated with Epstein-Barr virus exposure after organ transplantation.25–27</td>
</tr>
<tr>
<td>Lymphoma and leukaemia</td>
<td>Seen in cases of systemic malignancy. May have hypopyon uveitis.28–40</td>
</tr>
<tr>
<td>Foreign body</td>
<td>History of ocular trauma or ocular foreign body. May see foreign body in cornea or conjunctiva. Caterpillar hairs have been frequently reported as a cause of iris nodules.21</td>
</tr>
<tr>
<td>Primary malignancy</td>
<td>Most common malignancies include melanoma, retinoblastoma, medulloepithelioma, and sarcoma. Pigmented or non-pigmented mass. Often found to have no response to steroids, refractory glaucoma, and hyphaema. Nodules may show growth over time.45–46</td>
</tr>
<tr>
<td>Juvenile xanthogranuloma</td>
<td>Yellowish iris nodules often seen with a hyphaema and skin lesions.47</td>
</tr>
<tr>
<td>Drug induced</td>
<td>Pinkish fleshy mass has been reported in association with propranolol.48</td>
</tr>
</tbody>
</table>

Institution, it is an invaluable tool in establishing a definitive diagnosis of infectious uveitis. This procedure can be conveniently performed in the outpatient setting, and has been shown to be safe in the hands of an experienced ophthalmologist.49 The information offered by an aqueous aspirate culture and stain, coupled with patient history and examination findings, can guide therapy and lead to appropriate treatment of disease beyond the eye.

Interestingly, one of the cases we present (case 2) had a recurrence of sterile uveitis 3 years after initially presenting with infectious uveitis. It is possible that her initial infection may have predisposed her to further episodes of non-infectious uveitis by: (1) leaving residual bacterial products such as peptidoglycan; (2) sensitising the immune system to antigens from an immune privileged site; or (3) favouring the deposition of circulating immune complexes as in the experimental Auer reaction.50

Nodules are an important diagnostic clue in the evaluation of uveitis. They should prompt a rededication to thorough review of systems and medical history. Specific symptoms relating to systemic infection, malignancy, and even drug side effects, as well as certain systemic inflammatory diseases, should be reviewed. Anterior chamber paracentesis can offer valuable information regarding the diagnosis and treatment of an infectious process. Because many patients with iris nodules and infectious uveitis do poorly with corticosteroid or other immunosuppressive therapy, early diagnosis and treatment may lead to more effective treatment and improve outcome.

ACKNOWLEDGEMENTS

Supported by in part by grants from Rosenfeld Family Fund and Research to Prevent Blindness.

Authors’ affiliations
T D Myers, J R Smith, A K Lauer, J T Rosenbaum, Casey Eye Institute, Oregon Health and Science University, Portland, Oregon, USA

Correspondence to: Dr Thomas D Myers, Casey Eye Institute, Oregon Health and Science University, 3375 SW Terwilliger Blvd, Portland, OR 97221–4197, USA; myerst@ohsu.edu

Accepted for publication 27 March 2002

REFERENCES

www.bjophthalmol.com
Iris nodules associated with infectious uveitis

T D Myers, J R Smith, A K Lauer and J T Rosenbaum

Br J Ophthalmol 2002 86: 969-974
doi: 10.1136/bjo.86.9.969

Updated information and services can be found at:
http://bjo.bmj.com/content/86/9/969

These include:

References
This article cites 46 articles, 6 of which you can access for free at:
http://bjo.bmj.com/content/86/9/969#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

Choroid (565)
Iris (57)
Neurology (1355)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/