Efficacy of lignocaine 2% gel in chalazion surgery

R T H Li, J S M Lai, J S K Ng, R W K Law, E M C Lau, D S C Lam

Background/aims: To determine whether topical 2% lignocaine (lidocaine) gel is an effective anaesthetic agent for chalazion surgery.

Methods: In a randomised controlled clinical trial, 57 subjects aged 12 years or over requiring incision and curettage for chalazion were recruited over an 8 month period. Patients were randomised into two groups. One group received 1.5 ml of lignocaine 2% injection and the other 1.5 ml of lignocaine 2% gel topically. Standard incision and curettage was then performed. The primary outcome of interest was the total pain experienced during the entire procedure including anaesthetic administration as well as incision and curettage. The pain from the local anaesthetic administration and during incision and curettage was assessed independently using a visual analogue scale (0–100). The sum of these two scores would be the total pain score out of 200. “Fear of injection” score (0–100) was also assessed.

Results: There was a statistically significant difference in the mean total pain scores between the injection and the gel groups (95.6 ± 57.0) (p < 0.001) (β = 0.03) (1 – β = 0.9939). There was a statistically significant difference in the mean scores on “pain of anaesthetic administration” (47.0 ± 5.5) (p < 0.000). There was no statistically significant differences in the mean scores on “fear of injection” (43.9 ± 47.7) (p = 0.668) and “pain during incision and curettage” (48.28 ± 51.4) (p=0.679).

Conclusions: Lignocaine 2% gel is effective in chalazion surgery especially in lowering the pain caused by anaesthetic administration.

A chalazion (meibomian cyst) is a chronic lipogranulomatous inflammatory lesion caused by blockage of gland orifices and stagnation of sebaceous secretions. They may press on the cornea and cause blurred vision from the induced astigmatism. Up to 50% of chalazia may be cured or improved with medical treatment within 1 month. However, the remainder will usually require surgical intervention for further resolution. The use of intralesional steroids has been advocated in the treatment of chalazia. However, this has only been effective in small, multiple, and marginal chalazia whereas incision and curettage is more effective in larger lesions. A significant proportion of patients with chalazia will therefore require surgical treatment with incision and curettage for complete resolution.

Incision and curettage for chalazia is conventionally performed with local anaesthetic injections (transcutaneous) such as lignocaine (lidocaine) 2%. Complications associated with the injections may include bleeding from the injection site, haematoma formation, and ocular damage if the injection penetrates through the eyelid. The injection of local anaesthetic solutions is frequently a painful and unpleasant procedure. The injection of local anaesthetic solutions produces pain and burning discomfort, which is often severe enough to be the most unpleasant part of a minor surgical procedure.

Lignocaine 2% gel has already established its role in cataract surgery. There has been a significant shift towards the use of topical anaesthesia for routine cataract surgery in the past few years. The potential role of this topical anaesthetic agent in chalazion surgery has not yet been established.

Although chalazia are more common in adults, they frequently occur in children. If medical treatment fails, surgical incision and curettage is advocated in the treatment of chalazia. However, this has only been effective in small, multiple, and marginal chalazia whereas incision and curettage is more effective in larger lesions. This technique was then performed. The primary outcome of interest was the total pain experienced during the entire procedure including anaesthetic administration as well as incision and curettage. The pain from the local anaesthetic administration and during incision and curettage was assessed independently using a visual analogue scale (0–100). The sum of these two scores would be the total pain score out of 200. “Fear of injection” score (0–100) was also assessed.

Results: There was a statistically significant difference in the mean total pain scores between the injection and the gel groups (95.6 ± 57.0) (p < 0.001) (β = 0.03) (1 – β = 0.9939). There was a statistically significant difference in the mean scores on “pain of anaesthetic administration” (47.0 ± 5.5) (p < 0.000). There was no statistically significant differences in the mean scores on “fear of injection” (43.9 ± 47.7) (p = 0.668) and “pain during incision and curettage” (48.28 ± 51.4) (p=0.679).

Conclusions: Lignocaine 2% gel is effective in chalazion surgery especially in lowering the pain caused by anaesthetic administration.
The operated eye was pressure patched for 5 minutes or until haemostasis was achieved. The wound was then re-examined. If good haemostasis was achieved, the eye was padded for 1 day with antibiotic ointment and then removed. Immediately after the operation, while the eye was still padded, the evaluator assessed the pain experienced during incision and curettage. The pain from the local anaesthetic administration was also assessed. In the injection group, this represented the overall pain experienced from both the introduction of the needle as well as anaesthetic infiltration. In the gel group this represented any pain experienced from the application of the gel alone. A 0–100 visual analogue scale was used to assess pain. A score of zero represented no pain at all. A score of 100 represented the worst pain ever. “Fear of injection” score was evaluated preoperatively using a 0–100 visual analogue scale. The “fear of injection” score during incision and curettage was 48.3 (28.4) in the injection group and 5.5 (11.7) in the gel group. The mean pain score during anaesthetic administration was 47.0 (26.6) in the injection group and 5.5 (11.7) in the gel group. A statistically significant difference in mean pain score at the 5% level of significance (p = 0.000) (Table 2). The statistical power for pain during anaesthesia was 0.999. For a minimal clinically significant difference of 20 between the two groups for pain during incision and curettage, the statistical power calculated was 0.7580.

DISCUSSION

Most patients have substantial psychological fears of injections. The “fear of injection” scores among the study subjects confirmed this. The scores were similar in the two groups. This reduced the possible bias as a consequence of differences in psychological fear.

Since treatment was given in one setting and the outcomes were evaluated immediately, we did not have any problems with compliance or losses to follow which might violate randomisation and reduce comparability between treatment groups.

The two groups were comparable in age and sex distribution. This reduced any potential bias due to uneven distribution of study subjects. This confirmation of the comparability of the two treatment arm subjects after randomisation added further to our confidence that any difference in outcome could be truly attributed to the test treatment.

None of the study subjects included were unable to tolerate the incision and curettage procedure as a result of inadequate analgesia and unbearable pain. All subjects received the designated treatment. None of the gel group required reversion to conventional injection anaesthesia because of inadequate anaesthesia by lignocaine gel.

Specific measures were taken to maintain the integrity of randomisation. One person using a random table centrally coordinated the randomisation. Treatment arms were revealed to the surgeon only after enrolment in the study. This reduced any bias as a result of prior knowledge of the treatment arm and subsequent recruitment. The comparability in terms of group size, age, sex, and fear of injection further consolidated the integrity of the randomisation.

Ideally, patients, treatment team, and evaluators should be kept ignorant of group allocation and treatment group. We had considered the use of normal saline as placebo for injection and methylcellulose as placebo for gel. However, we would not be able to compare the pain scores for anaesthetic administration, which was one of our main outcome measures. Placebo was therefore not used and complete blinding was not achieved.

Another limitation of our study was the potential bias due to surgeon variation. We tried to minimise the variation by including only surgeons with similar level of experience. The

Table 1 Summary of patient demographics

<table>
<thead>
<tr>
<th></th>
<th>No</th>
<th>Mean score</th>
<th>SD</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age injection</td>
<td>29</td>
<td>34.1</td>
<td>18.2</td>
<td>0.878</td>
</tr>
<tr>
<td>gel</td>
<td>28</td>
<td>34.8</td>
<td>17.0</td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>injection</td>
<td>29</td>
<td>17 male,</td>
<td>0.522</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12 female</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gel</td>
<td>28</td>
<td>14 male,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14 female</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fear</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>injection</td>
<td>29</td>
<td>43.9</td>
<td>28.9</td>
<td>0.666</td>
</tr>
<tr>
<td>gel</td>
<td>28</td>
<td>47.7</td>
<td>36.1</td>
<td></td>
</tr>
</tbody>
</table>

Table 2 Summary of visual analogue pain scores

<table>
<thead>
<tr>
<th></th>
<th>No</th>
<th>Mean score</th>
<th>SD</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total pain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>injection</td>
<td>29</td>
<td>95.6</td>
<td>49.9</td>
<td>0.001</td>
</tr>
<tr>
<td>gel</td>
<td>28</td>
<td>57.0</td>
<td>31.7</td>
<td></td>
</tr>
<tr>
<td>Pain anaesthesia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>injection</td>
<td>29</td>
<td>47.0</td>
<td>26.6</td>
<td>0.000</td>
</tr>
<tr>
<td>gel</td>
<td>28</td>
<td>5.5</td>
<td>11.7</td>
<td></td>
</tr>
<tr>
<td>Pain I&C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>injection</td>
<td>29</td>
<td>48.3</td>
<td>28.4</td>
<td>0.679</td>
</tr>
<tr>
<td>gel</td>
<td>28</td>
<td>51.4</td>
<td>28.8</td>
<td></td>
</tr>
</tbody>
</table>

I&C = incision and curettage.
use of randomisation should, however, reduce or eliminate any known or unknown confounders including surgeon variation.

We would also like to share some of the experience and practical tips gained from the verbal feedback of our patients, which may reduce patient discomfort. Regardless of whether gel or injection anaesthesia was used, the pressure effect of the clamping of the chalazion clamp and curettage is often the most unpleasant part of the procedure besides injection.

Keeping the clamping time as short as possible will cause the least discomfort to patients. We may consider adding either lignocaine 2% solution or lignocaine 2% gel using a cannula into the incision opening before curettage. Immediate postoperative discomfort can also be reduced by patching the eye with lignocaine 2% gel for 5 minutes or until haemostasis is achieved before irrigation and patching with conventional antibiotics.

CONCLUSION
We conclude that 2% lignocaine gel is effective in chalazion surgery especially in lowering the pain due to anaesthetic administration. This method of anaesthesia would be particularly useful in patients who have distressing fears of injection and in whom poor cooperation renders the patient vulnerable to needle related injuries.

........................

Authors' affiliations
R T H Li, J S M Lai, Department of Ophthalmology, United Christian Hospital, Kowloon, Hong Kong, People’s Republic of China
J S K Ng, Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, People’s Republic of China
R W K Law, D S C Lam, Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, University Eye Center, Hong Kong Eye Hospital, Kowloon, Hong Kong, People’s Republic of China
E M C Lau, Department of Community & Family Medicine, The Chinese University of Hong Kong, School of Public Health, Prince of Wales Hospital, Shatin, NT, Hong Kong, People’s Republic of China

Financial support: Nil.
Proprietary interest: Nil.
Correspondence to: Dr Randa T H Li, Department of Ophthalmology, United Christian Hospital, Hip Wo Street, Kowloon, Hong Kong, People’s Republic of China; randali@net-yan.com

Accepted for publication 14 May 2002

REFERENCES
Efficacy of lignocaine 2% gel in chalazion surgery

R T H Li, J S M Lai, J S K Ng, R W K Law, E M C Lau and D S C Lam

Br J Ophthalmol 2003 87: 157-159
doi: 10.1136/bjo.87.2.157

Updated information and services can be found at:
http://bjo.bmj.com/content/87/2/157

These include:

References
This article cites 5 articles, 0 of which you can access for free at:
http://bjo.bmj.com/content/87/2/157#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
- Neurology (1355)
- Eye Lids (60)
- Epidemiology (1068)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/