SCIENTIFIC CORRESPONDENCE

Variability across the optic nerve head in scanning laser tomography

J C H Tan, D F Garway-Heath, R A Hitchings

Aim: To characterise measurement variability in scanning laser tomography of the optic nerve head.

Methods: 21 normal and 21 glaucoma subjects underwent same and separate day test-retest Heidelberg retina tomograph imaging by the same and different operators.

Results: Rim area was most reproducible among parameters. Its variability tended to be highest temporally and increased \(p<0.05 \) with testing involving different operators and visits. Nature of regional variability differed between glaucoma and normal eyes and between standard and 320 \(\mu \)m reference planes.

Conclusions: Rim area is reproducible and potentially useful as a marker of progression. Pattern of variability and the influence of different reference planes, disease, operators, and visits should be considered when evaluating progression.

Scanning laser tomography of the optic nerve head (ONH) is reproducible,\(^1\),\(^2\) but in what way it should be used to evaluate glaucoma progression remains to be determined. To judge progression, measurement variability needs to be distinguished from true change, for which a detailed understanding of reproducibility is needed. Variability in Heidelberg retina tomograph (HRT) image analysis may be influenced by blood vessels, cardiac pulsation,\(^3\) and the ONH’s variably sloped, excavated surface.\(^4\),\(^5\) Progression is not uniform over the ONH\(^6\),\(^7\) and its detection is likely to be influenced by test conditions and variability in different ONH regions. We studied the reproducibility of different topographic parameters, from which one was selected to assess variability regionally. Whether testing involving different operators and visits affects variability was studied in normal and glaucoma eyes. Then the possibility that different reference planes vary in reproducibility was investigated.

METHODS

Study subjects

Twenty one normal (mean visual field MD = +0.11 dB) and 21 age matched glaucoma subjects (MD = -4.6 dB) attending a glaucoma research clinic at Moorfields Eye Hospital underwent repeat testing. All were experienced with tests in this study. Selection was not restricted by severity of visual field defects nor ONH appearance. Normal subjects had (1) pretreatment IOP >21 mm Hg on at least two occasions, (2) reproducible Humphrey 24-2 field defects with AGIS scores >0, (3) open anterior chamber angles, and (4) no known ocular disease other than glaucoma. Glaucoma patients were treated medically, had IOP <22 mm Hg, and treatment did not change between tests.

Imaging

Test-retest HRT imaging (software v2.01; Heidelberg Engineering, Germany) was by experienced operators in both eyes of all subjects. Eyes were imaged in random order. Three well centred 10\(^\circ\) images were acquired at each session. Corneal curvature, scan depth and focus settings were kept constant. Pupils were not dilated.

Subjects attended two test visits separated by 6–8 months. Each visit had two imaging sessions, an hour apart. The same operator scanned in both sessions on the first visit, and one session of the second visit. A separate operator scanned in the second session of the second visit. Imaging sessions were ordered randomly. Variability was analysed along four lines: (1) intraoperator-intravisit, (2) intraoperator-intervisit, (3) interoperator-intravisit, and (4) interoperator-intervisit.

Analysis

Mean topography images from one randomly selected eye of each subject were analysed. All images had pixel mean SD < 50 \(\mu \)m. Contour lines, all drawn by the same observer (JT), were exported to test-retest images. For global analysis, topographic parameters (see Fig 1) were analysed by two reference planes: (1) standard reference plane set 50 \(\mu \)m posterior to contour line height between 350\(^\circ\) and 356\(^\circ\) (HRT software v1.11 to 2.01),\(^1\),\(^2\) and (2) 320 \(\mu \)m reference plane offset by 320 \(\mu \)m posterior to the mean height of the reference ring (HRT software v1.09 to 1.10).\(^1\) For regional analysis, a single reliable parameter was assessed in 30\(^\circ\) sectors round the ONH (0–360\(^\circ\)).

Parameter variability was compared using the coefficient of variation (CV). Regional variability was analysed as described by Bland and Altman.\(^1\) Significance testing was by the Wilcoxon signed rank test (Mann-Whitney test) to determine if sector variability (differences) changed with different operators and visits.

RESULTS

In Figure 1, CV for both reference planes tended to increase with different test operators and visits. Apart from disc area, the rim area of the CV was lowest and reasonably proportioned to its point estimates. In normal eyes, median rim area CV for intraoperator-intravisit and interoperator-intervisit testing was 1.1% and 1.6%, respectively for the 320 \(\mu \)m reference plane; and 1.5% and 2.3% respectively for the standard reference plane. A comparable pattern was seen in
DISCUSSION

Our results indicate that different test operators and visits affect reproducibility independently, and that this varies by reference plane and ONH region. Previous studies of parameter variability have not addressed the influence of different operators, visits, or reference planes in mean images. One study that measured global pixel variability reported that different visits did not significantly affect variability, though a trend was seen. We studied discrete regions of rim area and our results agree with Jonescu-Cuyperse et al, who found that variability was generally less (median 30%) in same day repeat imaging than imaging separated by 1 day to 1 year.

Some points should be noted. Firstly, cup area CV was higher than for rim area because its point estimates were small relative to variability (SD/mean) rather than cup area being more variable per se. In fact, SD for cup area and rim area were similar (p>0.05). Secondly, cup shape had high variability, suggesting its limited usefulness in longitudinal evaluation (although it has been suggested for diagnosis). Possible reasons for the observed patterns of variability are, firstly, the ONH is often tilted temporally and inferiorly so that the reference plane is more superficial in the ONH temporally than nasally. Slight shifts may lift the reference plane above the temporal but not nasal rim surface to artefactually reduce rim area temporarily. In glaucoma, the ONH could become depressed relative to the surrounding retina, causing the reference plane to lie more superficially in the nerve and measurements to be more variable. Secondly, reference plane shifts should affect the temporal rim-cup more than in steeper nasal regions. Thirdly, the standard reference plane is fixed to a small 6° section of the inferotemporal contour line, where it
Variability across the ONH in scanning laser tomography

Figure 2 Bar graphs for regional variability in rim area. Top row = normal eyes, standard reference plane (ref plane); middle row = normal eyes, 320 μm reference plane; bottom row = glaucoma eyes, standard and 320 μm reference plane. Intraop intravis = intraoperator-intravisit agreement, interop intravis = interoperator-intravisit agreement, intraop intervis = intraoperator-intervisit agreement, interop intervis = interoperator-intervisit agreement. Each bar = 95% agreement interval for a 30° sector of rim area. Sectors located on ONH circumference (0–360°), with 0° = temporal, 180° = nasal, 270° = inferior. Shaded regions = 30° sectors with significantly greater (p<0.05) with testing by different operators or in different visits. A = diagrams show sectors in which variability increased significantly (normal area. Sectors located on ONH circumference (0–360°), with 0° = temporal, 180° = nasal, 270° = inferior.

References

Variability across the optic nerve head in scanning laser tomography

J C H Tan, D F Garway-Heath and R A Hitchings

Br J Ophthalmol 2003 87: 557-559
doi: 10.1136/bjo.87.5.557

Updated information and services can be found at:
http://bjo.bmj.com/content/87/5/557

These include:

References
This article cites 16 articles, 0 of which you can access for free at:
http://bjo.bmj.com/content/87/5/557#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Angle (1006)
- Glaucoma (988)
- Intraocular pressure (1002)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/