Penetrating keratoplasty: indications over a 10 year period

N Al-Yousuf, I Mavrikakis, E Mavrikakis, S M Daya

Aims: To determine the indications for penetrating keratoplasty (PK) at the Corneoplastic Unit and Eye Bank, UK, a tertiary referral centre, over a 10 year period.

Methods: Records of all patients who underwent PK at our institution between 1990 and 1999 were reviewed retrospectively. Of the 1096 procedures performed in this period, 784 records were available for evaluation (72%).

Results: Re-grafting was the most common indication, accounting for 40.9% of all cases. Keratoconus was the second most common indication (15%), followed by Fuchs’ endothelial dystrophy (9.3%), pseudophakic bullous keratopathy (7.6%), and viral keratitis (5.9%), which included both herpes simplex and herpes zoster. A statistically significant decreasing trend was observed using regression analysis (p < 0.005). Among the re-graft subgroup, viral keratitis accounted for 21.2% as the underlying primary diagnosis. The most common cause for graft failure in the re-graft subgroup was endothelial failure (41.8%).

Conclusion: Re-grafting is the leading indication for PK; viral disease—although declining—is the leading primary diagnosis.

Penetrating keratoplasty (PK) is the most common tissue transplant performed in Europe and the United States. Advances in the medical management of certain diagnoses and the adoption of a conservative approach have changed patterns in the indications of PK. Moreover, the decline of certain disorders due to changes in surgical practice, and the emergence of new surgical techniques have largely influenced the changing trend. The indications for PK have continued to change since 1940 and investigators have studied the changing trends over the past few decades.

To update these trends we report the indications for PK from 1990 to 1999, and compare these with indications during an earlier time period at the same institution and to those of other series.

PATIENTS AND METHODS

A retrospective analysis of records of all cases of PK performed between January 1990 and December 1999 was undertaken. All cases were performed at the Corneoplastic Unit and Eye Bank, UK, a tertiary referral centre for corneal and anterior segment disorders. Of the 1097 PKs performed in this period, only 784 medical records were available for review. Records were not accessible or had been destroyed as patients had not been followed up—either because they lived abroad, transferred to another institution, or had died. Although the indications for PK for the remaining 313 cases could be retrieved from the booking register, we elected not to include these as there was little correlation between the data recorded in the operative note and the register. Information obtained was analysed with respect to age, sex, eye grafted, and preoperative clinical diagnosis. The indications for PK were divided into seven diagnostic categories (fig 1). Regrafts were further analysed for the aetiology of failure of the previous graft and original diagnosis.

Statistical significance was determined using chi-squared analysis. A combination of linear regression and t-test were used to establish linear trends and to determine the statistical significance of the trend.

RESULTS

Of the 784 cases performed, 714 (91%) had the graft performed for visual reasons. Sixty five (8.3%) were for therapeutic reasons such as unresponsive infection (n = 13, 1.7%), threatened perforation (n = 9, 1.1%), and actual perforation (n = 43, 5.5%). Only five cases (0.6%) were performed for cosmetic reasons. Of 13 eyes which had a PK for infection, seven cases were bacterial, one Acanthamoeba, and in the five remaining cases the infectious agent was unknown.

The mean patient age was 54.2 ± 10.37 years with a standard deviation (SD) of 21.46 and a median of 56.5 years. The mean ages for the main diagnoses were regraft 54.4 (SD 19.66) years, keratoconus 32.5 (SD 11.70) years, herpes infection 55.5 (SD 20.87) years, Fuchs’ endothelial dystrophy 70 (SD 10.37) years, and pseudophakic bullous keratopathy (PBK) 75 (SD 9.74) years.

Figure 1 Indications for penetrating keratoplasty (PK), 1990–1999. Re-graft (n = 321, 40.9%) was the most common indication for PK. Keratoconus (n = 138, 17.6%) was the second most common indication, followed by Fuchs’ endothelial dystrophy (n = 73, 9.3%), pseudophakic bullous keratopathy (n = 60, 7.6%), viral keratitis (n = 46, 5.9%), and other dystrophies (n = 28, 3.6%). These six indications account for 82.3% of indications for PK. Aphakic bullous keratopathy, injuries, interstitial keratitis, and ulcerative keratitis accounted for most of the remaining cases (n = 138, 17.6%).

Abbreviations: HSV, herpes simplex virus; PBK, pseudophakic bullous keratopathy; PK, penetrating keratoplasty.
Overall, sex distribution showed slight male predominance with 54.7% males and 45.3% females. Using χ^2 analysis for sex differences by diagnostic categories there was a statistically significant predominance among males with keratoconus (79 males, 39 females; $p<0.001$). No significant sex difference was found for the other diagnostic categories. The trends of the main indications for PK are illustrated in figure 2.

The underlying primary diagnosis and the reason for graft failure in the regraft subgroup were evaluated (table 1). Surgical procedures associated with PK are illustrated in table 2.

Figure 3 illustrates the comparison of the current indications for PK with those studied in the previous two decades.

DISCUSSION

The Corneoplastic Unit and Eye Bank is a tertiary referral centre that deals primarily with corneal and anterior segment disorders. The indications for PK are not representative of those nationwide and clearly reflect the specialty nature of the institution (table 3). The category “other” in the table provided by UK Transplant accounted for 28% of indications. This is erroneous and reflects the operating surgeons’ unwillingness to categorise indications according to the list provided in the Transplant Record Form.

Regrafting accounted for 40.9% of all PKs over 10 years, a figure that has essentially not changed from the last series spanning two decades (40.8%). It was also one of the leading indications at a number of institutions in Europe and North America. Regrafting can be expected to remain a leading indication for PK with the expanding pool of PK recipients and endothelial failure as a leading cause of graft failure. However with the growing interest in lamellar

Figure 2 Trends of the leading indications for penetrating keratoplasty (PK). Viral keratitis, which included both herpes simplex and herpes zoster, as an indication for PK, showed a statistically significant decreasing trend using regression analysis (A, $p<0.001$). Pseudophakic bullous keratopathy (PBK) increased, reaching a peak in 1999 (B, $p<0.05$). Fuchs’ endothelial dystrophy, regrafts, and keratoconus fluctuated over this 10 year period and did not show a statistically significant trend (C–E). The correlation coefficient r measures the closeness of fit of the data to the regression line.

Table 1 Analysis of regrafts: original diagnosis and cause of failure

<table>
<thead>
<tr>
<th>Original diagnosis</th>
<th>Causes of failure</th>
<th>PK</th>
<th>Total</th>
</tr>
</thead>
</table>
| Viral keratitis | Endothelial failure* | 134| 41.8%
| Dystrophies | Endothelial rejection† | 53 | 16.5%
| Bullous keratopathy | Astigmatism | 20 | 6.2%
| Trauma | Recurrence of dystrophy | 15 | 4.7%
| Keratoconus | Perforation | 15 | 4.7%
| Ulcerative keratitis | Bacterial infection | 13 | 4.3%
| Corneal opacities | Scarring | 12 | 3.7%
| Others | Recurrent HSV keratitis | 7 | 2.2%
| Unknown | Impending perforation | 6 | 1.9%
| | Perforation with bacterial infection | 6 | 1.9%
| Glaucoma | Recurrence of dystrophy | 7 | 2.2%
| Trauma | Recurrence of dystrophy | 7 | 2.2%
| Others | Recurrent HSV keratitis | 7 | 2.2%
| Unknown | Impending perforation | 6 | 1.9%
| | Perforation with bacterial infection | 6 | 1.9%
| Glaucoma | Recurrence of dystrophy | 7 | 2.2%
| Trauma | Recurrence of dystrophy | 7 | 2.2%
| Others | Recurrent HSV keratitis | 7 | 2.2%
| Unknown | Impending perforation | 6 | 1.9%
| | Perforation with bacterial infection | 6 | 1.9%
| Glaucoma | Recurrence of dystrophy | 7 | 2.2%
| Trauma | Recurrence of dystrophy | 7 | 2.2%
| Others | Recurrent HSV keratitis | 7 | 2.2%
| Unknown | Impending perforation | 6 | 1.9%
| | Perforation with bacterial infection | 6 | 1.9%
| Glaucoma | Recurrence of dystrophy | 7 | 2.2%
| Trauma | Recurrence of dystrophy | 7 | 2.2%
| Others | Recurrent HSV keratitis | 7 | 2.2%
| Unknown | Impending perforation | 6 | 1.9%
| | Perforation with bacterial infection | 6 | 1.9%
| Glaucoma | Recurrence of dystrophy | 7 | 2.2%
| Trauma | Recurrence of dystrophy | 7 | 2.2%
| Others | Recurrent HSV keratitis | 7 | 2.2%
| Unknown | Impending perforation | 6 | 1.9%
| | Perforation with bacterial infection | 6 | 1.9%
| Glaucoma | Recurrence of dystrophy | 7 | 2.2%
| Trauma | Recurrence of dystrophy | 7 | 2.2%
| Others | Recurrent HSV keratitis | 7 | 2.2%
| Unknown | Impending perforation | 6 | 1.9%
| | Perforation with bacterial infection | 6 | 1.9%
| Glaucoma | Recurrence of dystrophy | 7 | 2.2%
| Trauma | Recurrence of dystrophy | 7 | 2.2%
| Others | Recurrent HSV keratitis | 7 | 2.2%
| Unknown | Impending perforation | 6 | 1.9%
| | Perforation with bacterial infection | 6 | 1.9%
| Glaucoma | Recurrence of dystrophy | 7 | 2.2%
| Trauma | Recurrence of dystrophy | 7 | 2.2%
| Others | Recurrent HSV keratitis | 7 | 2.2%
| Unknown | Impending perforation | 6 | 1.9%
| | Perforation with bacterial infection | 6 | 1.9%
| Glaucoma | Recurrence of dystrophy | 7 | 2.2%
| Trauma | Recurrence of dystrophy | 7 | 2.2%
| Others | Recurrent HSV keratitis | 7 | 2.2%
| Unknown | Impending perforation | 6 | 1.9%
| | Perforation with bacterial infection | 6 | 1.9%
| Glaucoma | Recurrence of dystrophy | 7 | 2.2%
| Trauma | Recurrence of dystrophy | 7 | 2.2%
| Others | Recurrent HSV keratitis | 7 | 2.2%
| Unknown | Impending perforation | 6 | 1.9%
| | Perforation with bacterial infection | 6 | 1.9%
| Glaucoma | Recurrence of dystrophy | 7 | 2.2%
| Trauma | Recurrence of dystrophy | 7 | 2.2%
| Others | Recurrent HSV keratitis | 7 | 2.2%
| Unknown | Impending perforation | 6 | 1.9%
| | Perforation with bacterial infection | 6 | 1.9%
| Glaucoma | Recurrence of dystrophy | 7 | 2.2%
| Trauma | Recurrence of dystrophy | 7 | 2.2%
| Others | Recurrent HSV keratitis | 7 | 2.2%
| Unknown | Impending perforation | 6 | 1.9%
| | Perforation with bacterial infection | 6 | 1.9%
| Glaucoma | Recurrence of dystrophy | 7 | 2.2%
| Trauma | Recurrence of dystrophy | 7 | 2.2%
| Others | Recurrent HSV keratitis | 7 | 2.2%
significant decline in viral keratitis as an indication for primary PK. This is consistent with national UK data (table 3) and probably reflects better medical management of Herpetic keratitis through use of topical and systemic antivirals, increased appreciation of the higher risk of graft failure in this disease and a consequent reluctance to perform PK. Viral keratitis accounted only for 2.3% in the Doheny Eye Institute and also demonstrated a decreasing trend compared with earlier reports from the same institution. Brady et al also showed viral disease declining progressively. This decline, along with the use of systemic acyclovir, may in time reduce viral keratitis as a primary diagnosis for regrafts.

The most common cause for graft failure in regrafts was endothelial failure (41.8%) followed by endothelial rejection (16.5%). Primary failure accounted for 2.2% of regrafts. Sharif et al (1971–1990) reported a rate of 4.5% and Moorfields Eye Hospital (1985–1987) 5.8%. This decrease in primary failure as a cause, reflects the improvement in eye banking over the last decade. Endothelial decompensation was also described at Moorfields Eye Hospital as the leading cause for graft failure. MacEwen et al, in their study of regrafts, similarly demonstrated that allograft rejection and endothelial failure accounted for most graft failure causes.

Although keratoconus is the leading indication for PK nationally (23.5%) (table 3), it was the second most common indication in this series (15%) as it was previously between 1975 and 1990 (16.8%). Keratoconus was more common in males in our series and similar preponderance has been reported previously, although female predominance has also been described. Keratoconus has and continues to be a leading indication for PK elsewhere, however, with the resurgence of interest in lamellar techniques as well as the introduction of intracorneal rings, this may decrease in time.

Fuchs’ endothelial dystrophy was the third most common indication at 9.3%. The reported rates of Fuchs’ endothelial dystrophy are highly variable and probably due to different demographic pools and referral patterns. Although Fuchs’ endothelial dystrophy is known to be more common

Table 3: Comparison of indications for penetrating keratoplasty nationally (yearly intervals)* and at the Corneoplastic Unit and Eye Bank (CUEB), 1990–99

<table>
<thead>
<tr>
<th>Primary disease nationally (%)</th>
<th>Primary disease at CUEB, 1990–99 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regraft 0.1 0.1 0.1 0.2 0.1 0.4 0.4 0.6 0.8 0.8 0.83 40.9</td>
<td>Regraft 0.1 0.1 0.1 0.2 0.1 0.4 0.4 0.6 0.8 0.8 0.83 40.9</td>
</tr>
<tr>
<td>Keratoconus 19 20 21 21 21 21 21 21 21 21 21 21 21</td>
<td>Keratoconus 19 20 21 21 21 21 21 21 21 21 21 21 21</td>
</tr>
<tr>
<td>Fuchs’ dystrophy 8 8 10 10 10 10 10 10 10 10 10 9.3</td>
<td>Fuchs’ dystrophy 8 8 10 10 10 10 10 10 10 10 10 9.3</td>
</tr>
<tr>
<td>Endothelial failure 7 10 9 7 7 7 7 7 7 7 7 7.6</td>
<td>Endothelial failure 7 10 9 7 7 7 7 7 7 7 7 7.6</td>
</tr>
<tr>
<td>Pseudophakic bullous keratopathy 13 7 4 3 3 2 2 2 2 2 2 4.2</td>
<td>Pseudophakic bullous keratopathy 13 7 4 3 3 2 2 2 2 2 2 4.2</td>
</tr>
<tr>
<td>Endothelial failure 6 4 2 2 2 2 2 2 2 2 2 2.5</td>
<td>Endothelial failure 6 4 2 2 2 2 2 2 2 2 2 2.5</td>
</tr>
<tr>
<td>Acanthamoeba keratitis 6 5 3 4 3 3 3 3 3 3 3 3.5</td>
<td>Acanthamoeba keratitis 6 5 3 4 3 3 3 3 3 3 3 3.5</td>
</tr>
<tr>
<td>Fungal keratitis 6 5 4 3 3 3 3 2 1 3 3 3.2</td>
<td>Fungal keratitis 6 5 4 3 3 3 3 2 1 3 3 3.2</td>
</tr>
<tr>
<td>Acanthamoeba keratitis 3 4 6 5 5 4 3 3 3 3 3 4</td>
<td>Acanthamoeba keratitis 3 4 6 5 5 4 3 3 3 3 3 4</td>
</tr>
<tr>
<td>Infection 2 2 2 1 1 1 1 1 1 1 1 1.3</td>
<td>Infection 2 2 2 1 1 1 1 1 1 1 1 1.3</td>
</tr>
<tr>
<td>Other 17 14 10 12 12 12 12 12 12 12 12 17.6</td>
<td>Other 17 14 10 12 12 12 12 12 12 12 12 17.6</td>
</tr>
<tr>
<td>Occlusive disease 13 22 29 30 27 7 1 1 1 3 13.4</td>
<td>Occlusive disease 13 22 29 30 27 7 1 1 1 3 13.4</td>
</tr>
<tr>
<td>unknown 3.6 Other dystrophies</td>
<td>unknown 3.6 Other dystrophies</td>
</tr>
</tbody>
</table>

* National data provided by UK Transplant.
†Includes endothelial failure, rejection, primary failure, and other causes of failure.

Figure 3: Comparison of distribution of indications for penetrating keratoplasty at the Corneoplastic Unit and Eye Bank between 1990–99 and 1971–90. Regrafting was the most common indication in both series (40.9% and 40.8%, respectively). Keratoconus was the second most common indication and similar in both series (15% and 16.8%, respectively). Viral keratitis, which comprised 11.7% of the previous series, had a statistically significant increase in the present series. The frequency of both aphakic bullous keratopathy and interstitial keratitis were significantly higher in the previous series (p<0.005). Both pseudophakic bullous keratopathy and Fuchs’ endothelial dystrophy had a statistically significant increase in the present series (p<0.005).
among females, our study showed no statistically significant sex difference.

Although bullous keratopathy (aphakic and pseudophakic) has significantly declined nationally from 20% in 1990 to 9% in 1998 (table 3), this has not changed significantly as an indication for PK at our institution. However, as expected with increased use of intraocular lenses in cataract surgery in the mid 1980s, aphakic bullous keratopathy declined and PBK increased in our series (fig 3).

The incidence of PBK in the UK has been markedly lower than North America. Sharif et al reported 2% between 1975 and 1990. Between 1990 and 1999, PBK accounted for 7.6% in the UK (table 3) and the figure was identical in our series. In North America PBK became a leading indicator for PK in some series (Wills Eye Hospital 22.9%,12 Doheny Eye Institute in North America PBK became a leading indicator for PK in and 1990. Between 1990 and 1999, PBK accounted for 7.6% (fig 3).

With changes in medical and surgical management, one expects a change in indications for corneal transplantation, and indeed this has been reflected nationally in the UK. However it is interesting to note that the overall indications for PK at a referral centre have not essentially changed over a period of 30 years. Regrafts have continued to be a leading indication at an identical rate in two series at the same institution with viral disease, which although declining, being indication for PK at our institution. However, as expected in 1998 (table 3), this has not changed significantly as an indication for PK at a referral centre have not essentially changed over a period of 30 years.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the assistance of Andrea Rowe, Eye Bank Coordinator, Dr Helme and Caroline Langridge, Department of Clinical Audit and Research, Queen Victoria Hospital, East Grinstead, and Phil Pocock, Senior Biostatistician, UK Transplant.

Refereces

Penetrating keratoplasty: indications over a 10 year period

N Al-Yousuf, I Mavrikakis, E Mavrikakis and S M Daya

doi: 10.1136/bjo.2003.031948

Updated information and services can be found at:
http://bjo.bmj.com/content/88/8/998

These include:

References

This article cites 31 articles, 1 of which you can access for free at:
http://bjo.bmj.com/content/88/8/998#BIBL

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections

Articles on similar topics can be found in the following collections

- Ophthalmologic surgical procedures (1223)
- Cornea (524)
- Ocular surface (618)
- Eye (globe) (708)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/