Epidemiology of the optic nerve grey crescent in the Reykjavik Eye Study

O Jonsson, K F Damji, F Jonasson, A Arnarsson, T Eysteinsson, H Sasaki, K Sasaki

Aim: To establish the epidemiology of the grey crescent in a white population within the age range most susceptible to glaucoma.

Methods: Bruce Shields was first to use this term to describe a localised, physiological pigmentation of the optic nerve neuroretinal rim tissue that is distinct from peripapillary pigmentation. An experienced glaucomatologist (KFD) evaluated stereofundus photographs of the participants of the Reykjavik Eye Study (RES)—a random sample from the national population census including people 50 years and older. 1012 right eyes could be evaluated for grey crescent.

Results: The prevalence of grey crescent in the right eyes was 22.0% (95% CI 10 to 25). It was more commonly found in women (27.0%: 95% CI 23 to 30) than in men (17.0%: 95% CI 14 to 21), and was most often located temporally (36.9%), 360° (15.9%), or nasally (15.4%). The spherical equivalent was +1.30 dioptres (D) for those with and +0.80 D for those without grey crescent (p = 0.002), respectively. Vertical optic disc diameters were 0.203 v 0.195 units (p < 0.001). There was no difference in the prevalence of grey crescent in glaucomatous or non-glaucomatous eyes (OR = 1.05, 95% CI 0.49 to 2.26). The prevalence of a grey crescent was inversely related to the prevalence of peripapillary atrophy (p = 0.001).

Conclusions: The grey crescent needs to be recognised as a physiological variant in order to avoid falsely labelling eyes as having glaucomatous optic nerve damage.
utilising the stereo viewer, to be located on or within the neuroretinal rim tissue—that is, inside the scleral lip of the disc whereby the scleral lip had to be clearly visible peripheral to the crescent. If present, the location was determined depending on where the greatest extent was observed. Peripapillary atrophy (PPA) was noted when pigment and/or atrophy could be seen outside the disc edge—that is, peripheral to the scleral lip. We did not use the alpha zone and beta zone grading of PPA because the alpha zone and/or beta zone can be present immediately outside the scleral lip in different locations for the same nerve, and because this grading system does not give a clear idea of radial or circumferential extent of PPA. We thus graded PPA according to radial extent and circumferential extent. The radial extent of PPA (that is, the width of PPA adjacent to the nerve) was graded as 0 for no atrophy, 1 for minimal atrophy, 2 for moderate atrophy, 3 for marked atrophy, and 4 for extensive atrophy. Circumferential extent (location) was recorded as clockwise extent of contiguous areas according to a clock face superimposed on the nerve. The total number of clock hours of PPA was also recorded. The definition of glaucoma followed the criteria outlined by Foster et al.\(^1\) and is also summarised in detail in a review of glaucoma prevalence in the RES.\(^5\) The intraocular pressure was measured using the Nidek NT 2000 non-contact air puff tonometer.\(^11\) In this paper, we describe the results for the right eyes. The results for the left eyes were similar.

Statistical calculation, including descriptive statistics, \(t\) tests, phi coefficient, Fisher’s exact test, and logistic regression, were done using SPSS 11.0 (SPSS Inc, Chicago, IL, USA).

RESULTS
Quality of photographs
Quality grade 1 and 2 were disregarded for this analysis. Of the 1045 people examined fundus photographs of 1012 right eyes were available and of sufficient quality for analysis.

Grey crescent
The prevalence of grey crescent by age and right eyes can be seen in table 1. A grey crescent was found in 226 right eyes, giving an overall prevalence in this study population of 22.0% (95% CI 10 to 25) for right eyes. Of those with grey crescent in the right eye, 64.2% (95% CI 58 to 70) were women and 35.8% (95% CI 30 to 42) men. In both calculations, females turned out to be significantly more likely to have grey crescent than men \((p=0.001)\). Looking at either eye, the prevalence of grey crescent among men was 17.0% (95% CI 14 to 21) compared to 27.0% (95% CI 23 to 30) among women. Of those who had grey crescent in their right eye, 57.9% were bilaterally affected. Age did not affect the probability of presence of a grey crescent.

The grey crescent was most often located temporally (table 2). The grey crescent was located only temporally in 36.9% of instances (fig 1A) but occurred there as well as in other quadrants combined in 39.7% of those affected (fig 1B illustrates a superotemporal grey crescent). In 15.4% a grey crescent was found only nasally and in 15.9% it was found 360°. A grey crescent was rarely found in the inferior (1.4%) or superior (1.4%) quadrants only.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Prevalence of grey crescent by age, sex, for right eyes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age/years</td>
<td>Number at risk</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
</tr>
<tr>
<td><strong>Males</strong></td>
<td></td>
</tr>
<tr>
<td>50–59</td>
<td>164</td>
</tr>
<tr>
<td>60–69</td>
<td>142</td>
</tr>
<tr>
<td>70–79</td>
<td>130</td>
</tr>
<tr>
<td>80+</td>
<td>31</td>
</tr>
<tr>
<td>Total</td>
<td>467</td>
</tr>
<tr>
<td><strong>Females</strong></td>
<td></td>
</tr>
<tr>
<td>50–59</td>
<td>187</td>
</tr>
<tr>
<td>60–69</td>
<td>205</td>
</tr>
<tr>
<td>70–79</td>
<td>113</td>
</tr>
<tr>
<td>80+</td>
<td>40</td>
</tr>
<tr>
<td>Total</td>
<td>545</td>
</tr>
<tr>
<td><strong>Sexes combined</strong></td>
<td></td>
</tr>
<tr>
<td>50–59</td>
<td>351</td>
</tr>
<tr>
<td>60–69</td>
<td>347</td>
</tr>
<tr>
<td>70–79</td>
<td>243</td>
</tr>
<tr>
<td>80+</td>
<td>71</td>
</tr>
<tr>
<td>Total</td>
<td>1012</td>
</tr>
</tbody>
</table>
Optic nerve characteristics
When comparing optic disc diameters in those with and without a grey crescent, there was a significant difference in both vertical and horizontal disc diameters. Vertical disc diameter in grey crescent was 0.203 (SD 0.023) units vs 0.195 (SD 0.021) units in eyes without grey crescent (p < 0.001). Horizontal disc diameters in grey crescent were 0.194 (SD 0.021) units vs 0.186 (SD 0.021) units in eyes without grey crescent (p < 0.001). There was also a slight but statistically significant difference in C/D ratio between those with and without grey crescent. The mean vertical C/D ratio for those with grey crescent was 0.5 (SD 0.2) and for those without grey crescent it was 0.45 (SD 0.22), which is a statistically significant difference (p = 0.002). The mean horizontal C/D ratio for those with grey crescent was 0.49 (SD 0.19) and for those without grey crescent it was 0.44 (SD 0.21), which is also statistically significant (p = 0.002). Definite glaucomatous optic nerve changes were noted in 5.0% of those with grey crescent and in 4.7% of those without grey crescent. This difference is not statistically significant, OR = 1.05 (95% CI 0.49 to 2.26). There was no relation between the appearance of grey crescent and focal notching of the optic nerves.

Peripapillary atrophy
PPA was evident in 653 eyes, which is 65%. Peripapillary atrophy was found to be common in all age groups, the prevalence increasing with age (OR = 1.04/year, 95% CI 1.02 to 1.05, p < 0.001) (table 3). The radial extent of PPA was usually minimal (grade 1), sometimes moderate (grade 2) and rarely marked or extensive (grades 3 and 4, respectively). Of those without PPA 30% had grey crescent. Of those with PPA present in one quadrant 19% had grey crescent, with PPA in two quadrants 15% had grey crescent, with PPA in three quadrants 10% had grey crescent, and none of those with PPA in four quadrants had grey crescent. Calculation of the phi coefficient revealed a statistically significant inverse relation between circumferential extent of PPA and prevalence of grey crescent (ϕi = 0.166, p = 0.001).

Intraocular pressure, visual acuity, and refraction
The mean IOP was the same for those with and without grey crescent, (15.5 (SD 3.4) mm Hg and 15.5 (SD 3.2) mm Hg, respectively). There was no difference in mean visual acuity as measured by Snellen chart for those with and without grey crescent (p = 0.7). The mean spherical equivalent of those with grey crescent was +1.3 D (SD 2.07) and +0.8 D (SD 2.25) for those without grey crescent. This difference was statistically significant (p = 0.002).

DISCUSSION
The grey crescent is a localised physiological pigmentation of the optic nerve (probably on or within the neuroretinal rim tissue) that is distinct from peripapillary pigmentation. It needs to be recognised as being part of the disc tissue in order to avoid the false perception of localised neuroretinal rim thinning and hence glaucomatous disc damage. This study describes for the first time to our knowledge, the epidemiology of grey crescent in a white population. We are unaware of any previous studies that report prevalence of the grey crescent. Our study demonstrates that the grey crescent is a common variant in white people 50 years and older. The grey crescent is more common in women than in men and is associated with hyperopic eyes, larger optic discs as well as cups, and its prevalence is inversely related to the presence of peripapillary atrophy. The larger cup size may be associated with larger discs in those with grey crescent. In his clinic based study in North Carolina, Shields found an association between grey crescent and myopia and diabetes. This was not confirmed in our population based study. We found grey crescent associated with hyperopia and no association to diabetes or other systemic diseases. Shields also pointed out that the grey crescent was related to black race; however, our study shows that the phenomenon is also prevalent among white people. Grey crescent is easily identified in most white people. Grey crescent is a localised physiological pigmentation of the peripapillary area that can sometimes interfere with the interpretation of the optic nerve head. Among them are the alpha zone and zone beta, with the latter possibly representing a malposition of the embryonic fold, either a double layer or irregularity of retinal pig-ment within cells—for example, melanocytes, retinal pigment epithelial cells, or other cells within the nerve substance, or it may represent free pigment granules within the neuroretinal rim tissue or perhaps deeper within the lamina cribrosa. There are variations in the peripapillary pigmentation that can sometimes interfere with the interpretation of the optic nerve head. Among them are the alpha zone and zone beta, with the latter possibly representing a malposition of the embryonic fold, either a double layer or irregularity of retinal pigment epithelium. We did not grade PPA according to the alpha zone or beta zone but instead chose to characterise radial and circumferential extent of PPA. Unlike the peripapillary areas of pigment—for example, zone beta, the grey crescent appears to be within the substance of the optic nerve head and inside the scleral lip (disc edge). The fluorescein angiographic
findings that superficial vessels of the optic nerve head extend over the grey crescent, while the deep fluorescein of the nerve head is obscured, to a variable degrees, by the crescent supports this evidence. Unlike peripapillary atrophy, which increases in prevalence with age and is associated with glaucoma, the grey crescent does not appear to be associated with either age or glaucoma in the RES.

The importance of the grey crescent is that because of its location within the disc inside the scleral lip, the grey crescent can in some instances make the neural rim look thinner than it actually is giving the false impression of a focal thinning or atrophy of the optic nerve. This can lead to a false diagnosis of glaucomatous damage. Our finding that grey crescent is common in white individuals from the RES aged over 50 years, makes it important to keep in mind when evaluating optic nerves for glaucomatous damage in a white population.

ACKNOWLEDGEMENTS
This work was supported by the Icelandic Research Council and the St Joseph’s Hospital Research Fund. Drs L Wang and R Munger provided assistance in calculation of corrected disc diameters.

Authors’ affiliations
O Jonsson, Department of Ophthalmology, Sahlgrenska University Hospital, Gothenburg, Sweden
K F Damji, University of Ottawa Eye Institute and Ottawa Health Research Institute, Ottawa, Canada
F Jonasson, A Arnarsson, Department of Ophthalmology, University of Iceland, Reykjavik, Iceland
T Eysteinsson, Department of Physiology, University of Iceland, Reykjavik, Iceland
H Sasaki, K Sasaki, Kanazawa Medical University, Uchinada, Japan

REFERENCES
Epidemiology of the optic nerve grey crescent in the Reykjavik Eye Study

O Jonsson, K F Damji, F Jonasson, A Arnarsson, T Eysteinsson, H Sasaki and K Sasaki

Br J Ophthalmol 2005 89: 36-39
doi: 10.1136/bjo.2004.044305

Updated information and services can be found at:
http://bjo.bmj.com/content/89/1/36

These include:

References
This article cites 13 articles, 1 of which you can access for free at:
http://bjo.bmj.com/content/89/1/36#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

Angle (1006)
Glaucoma (988)
Intraocular pressure (1002)
Epidemiology (1068)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/