Novel rhodopsin mutations and genotype-phenotype correlation in patients with autosomal dominant retinitis pigmentosa

A Schuster, N Weisschuh, H Jägle, D Besch, A R Janecke, H Zierler, S Tippmann, E Zrenner, B Wissinger

Aim: To identify novel or rare rhodopsin gene mutations in patients with autosomal dominant retinitis pigmentosa and description of their clinical phenotype.

Methods: The complete rhodopsin gene was screened for mutations by DNA sequencing in index patients. Mutation specific assays were used for segregation analysis and screening for controls. Eight patients from five families and their relatives were diagnosed with autosomal dominant retinitis pigmentosa (adRP) by means of clinical evaluation.

Results: Mutation screening identified five different rhodopsin mutations including three novel mutations: Ser176Phe, Arg314fs16, and Val20Gly and two missense mutations, Pro215Leu and Thr289Pro, that were only reported once in a mutation report. Electrophysiological and psychophysical tests provide evidence of an impaired rod system with additionally affected cone system in subjects from each genotypic group. Visual function tended to be less affected in subjects with the Arg314fs16 and Val20Gly mutations than in the Ser176Phe phenotype. In contrast, Pro215Leu and Thr289Pro mutations caused a remarkably severe phenotype.

Conclusion: The ophthalmic findings support a correlation between disease expression and structural alteration: (1) extracellular/intradiscal Val20Gly and cytoplasmic Arg314fs16 mutation—mild adRP phenotype; (2) Ser176Phe mutation—‘most type 1’ disease; (3) predicted alteration of transmembrane domains TM V and TM VII induced by Pro215Leu and Thr289Pro—severe phenotype. However, variation of phenotype expression in identical genotypes may still be a typical feature of RHO mutations.

Abbreviations: adRP, autosomal dominant retinitis pigmentosa; arRP, autosomal recessive retinitis pigmentosa; xlRP, X linked retinitis pigmentosa; DHPLC, denaturing high performance liquid chromatography; RFLP, restriction fragment length polymorphism; PCR, polymerase chain reaction; RHO, rhodopsin.
RESULTS

Mutation analysis

The index patient of each family was screened for mutations in the RHO gene. Table 1 summarises the respective sequence alterations. Three of them were novel mutations (Val20Gly, Ser176Phe, Arg314fs16), and the other two mutations (Pro215Leu, Thr289Pro) have only been reported once in a brief mutation report without clinical details.\(^23\)

Clinical studies

Figure 1 (A to E) shows the pedigree of the patients/families investigated.

<table>
<thead>
<tr>
<th>Mutation carriers/ controls</th>
<th>Previously reported</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/100</td>
<td>No</td>
</tr>
<tr>
<td>0/100</td>
<td>No</td>
</tr>
<tr>
<td>0/100</td>
<td>See ref 23</td>
</tr>
<tr>
<td>0/100</td>
<td>See ref 23</td>
</tr>
</tbody>
</table>

Table 1 RHO mutations

<table>
<thead>
<tr>
<th>Nucleotide sequence alteration</th>
<th>Consequence</th>
<th>Location</th>
<th>Mutation carriers/ families tested</th>
<th>Mutation carriers/ controls</th>
<th>Previously reported</th>
</tr>
</thead>
<tbody>
<tr>
<td>c.59T>G</td>
<td>Val20Gly</td>
<td>Exon 1</td>
<td>6/10</td>
<td>0/100</td>
<td>No</td>
</tr>
<tr>
<td>c.527C>T</td>
<td>Ser176Phe</td>
<td>Exon 2</td>
<td>1/1</td>
<td>0/100</td>
<td>No</td>
</tr>
<tr>
<td>c.644C>T</td>
<td>Pro215Leu</td>
<td>Exon 3</td>
<td>5/12</td>
<td>0/100</td>
<td>See ref 23</td>
</tr>
<tr>
<td>c.865>C</td>
<td>Thr289Pro</td>
<td>Exon 4</td>
<td>1/1</td>
<td>0/100</td>
<td>See ref 23</td>
</tr>
<tr>
<td>c.942insG</td>
<td>Arg314fs16</td>
<td>Exon 5</td>
<td>1/1</td>
<td>Not performed</td>
<td>No</td>
</tr>
</tbody>
</table>

Figure 1 (A to E) Pedigrees of adRP families. Circles, females; squares, males; solid symbols, affected members; open symbols, unaffected members; slashed symbols, deceased members; arrows, persons examined ophthalmologically; asterisks, DNA analysis performed.
The clinical characteristics of affected patients are summarised in table 2. Original phenotype data is indicated in figures 2–4.

DISCUSSION

We studied patients from five independent families showing typical clinical features of autosomal dominant RP. Two of the novel mutations were missense mutations, and one was a 1bp insertion (c.942insG) that results in a frameshift and subsequent translation termination.

We found considerable relation between the individual mutation and disease expression. Cideciyan and colleagues distinguished two patterns of rod disease expression in a variety of rhodopsin mutations.24 Other widely accepted classification systems have been developed by Massof & Finkelstein,25 Lyness et al,26 and Fishman et al.27 According to the latter systems the phenotypes of our study can be subdivided into distinct groups.

Patients with the novel mutations Arg314fs16 (family 2) and Val20Gly (family 4) express a remarkably mild “mostly type 2” phenotype25 with late onset of symptoms and a more favourable visual prognosis or “R”-type26 and the Ser176Phe phenotype (family 1) discloses an intermediate “mostly type 1” or “D”-phenotype. In contrast, the Pro215Leu (family 3) and Thr289Pro (family 5) mutations result in a severe type 1- or D-phenotype with early onset of symptoms and rapid loss of visual field area, corresponding with a diffuse and progressive loss of rod and cone function.

Based on current models of rhodopsin (fig 5), two of the novel mutations (Val20Gly and Ser176Phe) involve amino acids on the intradiscal/extracellular side and one occurs at the cytoplasmic side (Arg314fs16). Mutations Pro215Leu and Thr289Pro involve transmembrane domains.

Considering intradiscal/extracellular mutations, it has been reasoned that missense mutations affecting residues 2–49 or 15–172 disclose with N-glycosylation or that the
replacement of cysteines 110 and 187 prevent the formation of the disulfide bridge.15

It could be speculated that the Ser176Phe mutation may induce a structural alteration of the cysteine 187 neighbourhood.

The Val20Gly missense mutation is close to previously described mutations in the N-terminal region of the polypeptide. The phenotype of patient III:13 carrying this novel mutation was extremely mild with moderately affected rod and cone function even at age 34.

The c.942insG mutation causes a frameshift mutation with premature stop codon that results in an alteration and shortening of the cytoplasmatic domain, the first rhodopsin mutation to be described in a Bosnian family. The phenotype of the single available patient is relatively mild with late onset symptoms and relatively well preserved central cone function. Cideciyan and colleagues described the phenotype of other C-terminal truncated mutations (Gln312X and Gln344X) and classified them as class B mutants.24

The Pro215Leu and Thr289Pro mutations involve amino acid exchanges within transmembrane domains, and both mutations eliminate or introduce proline residues. Recent publications described mutations perturbing critical inter-helical interactions between TM III and TM V, namely the Glu122, His211 salt bridge, resulting in a severe type of adRP in vivo.30–33

The Thr289Pro phenotype (family 5, individual III:1) may serve as another example of severe type adRP induced by a missense mutation in TM VII. Within TM VII, 11-cis-retinal covalently binds to opsin at the epsilon amino group of Lys296.34 35 The phenotype presented in our study parallels many features of the unusually severe Lys296Glu phenotype.36 37

Both intrafamilial and interfamilial phenotype differences among carriers of identical rhodopsin mutations have been described.38 39 On the other hand, a disease course fairly constant in all affected persons within the same large pedigree has also been documented.40
<table>
<thead>
<tr>
<th>Family number/mutation</th>
<th>Age of onset/mode of onset (age)</th>
<th>VA: RE/LE initial presentation (age)</th>
<th>Refractive error: RE/LE</th>
<th>Visual field: RE/LE (age)</th>
<th>ERG</th>
<th>Fundus</th>
<th>DA/panel D13</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/Ser176Phe (German)</td>
<td>IV:4 Night blindness; field constriction (13)</td>
<td>60/100; 60/100 (33)</td>
<td>+1.75/-1.75</td>
<td>Constriction to 15° (III/4e 90°) (33)</td>
<td>Scotopic: noise level</td>
<td>Slight optic atrophy, vessel narrowing, absent macular reflexes, peripheral pigment mottling, slight peripheral hyperpigmentation</td>
<td>Significant elevation/ desaturated: normal</td>
</tr>
<tr>
<td></td>
<td>V:4 Night blindness, glare sensitivity (2)</td>
<td>80/100; 100/100 (6)</td>
<td>+1.5/-1.5</td>
<td>Near normal (III/4e), constriction to 10°-20° (III/4e 90°) (6)</td>
<td>Not performed</td>
<td>Normal optic discs, peripheral RPE atrophy without bone spicules</td>
<td>Desaturated: normal</td>
</tr>
<tr>
<td>2/Arg314fs16 (Bosnian)</td>
<td>II:5 Night blindness, glare sensitivity, field constriction (33)</td>
<td>100/100; 120/100 (36)</td>
<td>Emmetropic</td>
<td>Constriction to 50-60° with large scotomas 15-40° (III/4e 90°) (36)</td>
<td>Scotopic: amplitude reduction to 10% normal range</td>
<td>Mild optic atrophy, moderately narrowed vessels, atypical macular ILM reflexes; bone-spicules in lower sector, diffuse RPE atrophy</td>
<td>Significant elevation/ desaturated: normal</td>
</tr>
<tr>
<td>3/Pro215Leu (German)</td>
<td>II:3 Night blindness (birth), visual acuity loss, field constriction (33), glare sensitivity (45)</td>
<td>10/200; 10/200 (48)</td>
<td>+1.25/-1.25</td>
<td>Constriction to 5-7° (III/4e 90°) (48)</td>
<td>Noise level (48)</td>
<td>Waxy optic nerve atrophy, vessel attenuation, RPE atrophy, and hyperpigmentation</td>
<td>Significant elevation/saturated: disturbances all axes</td>
</tr>
<tr>
<td></td>
<td>II:6 Night blindness (birth)</td>
<td>No details</td>
<td>No details</td>
<td>Constriction to 5-10° (III/4e 90°) (35)</td>
<td>Noise level (35)</td>
<td>No details</td>
<td>No details</td>
</tr>
<tr>
<td></td>
<td>III:4 Night blindness (birth), not aware of other symptoms</td>
<td>120/100; 80/100 (16)</td>
<td>+2.5/-2.75</td>
<td>Constriction to 10-25° (right eye), 7-15° (left eye) (III/4e 90°) (16)</td>
<td>Rad responses: noise level; cone 30 Hz: residual responses (16)</td>
<td>Normal optic disc, slightly narrowed vessels, cystoid macula oedema, peripheral RPE atrophy with hyperpigmentation</td>
<td>Significant elevation/ desaturated: slight disturbances all axes</td>
</tr>
<tr>
<td>4/Val20Gly (Austrian)</td>
<td>III:13 No symptoms</td>
<td>100/100; 80/100 (34)</td>
<td>0; 3.5 RE: cataract surgery at age 27</td>
<td>Not performed</td>
<td>Scotopic and photopic amplitude reduction with rest function; Electro-oculogram: no light peak, pathological Arden ratio</td>
<td>Absent macular reflexes, narrowed vessels, mid-peripheral hyperpigmentation</td>
<td>No details</td>
</tr>
<tr>
<td>5/Thr289Pro (Austrian)</td>
<td>III:1 Night blindness, field constriction (3), color vision (9), glare sensitivity (12), visual acuity (18), cataract extraction (27)</td>
<td>10/250; 10/250 (27)</td>
<td>Emmetropic</td>
<td>Constriction to ≤5° (III/4e 90°)</td>
<td>Scotopic/photopic: noise level</td>
<td>Temporal optic disc pallor, no macular reflexes, mid-peripheral hyperpigmentation</td>
<td>Significant elevation</td>
</tr>
</tbody>
</table>

Table 2 RHO Mutations and Phenotype
In summary, the phenotype description of Ser176Phe gives at least consistent examples of mother (IV:4) and daughter (V:4) expressing an intermediate type of adRP with early onset of symptoms, but possibly long time preserved visual acuity. For the Arg314fsX16 and Val20Gly mutations, we could describe an unusually mild phenotype. The alteration of transmembrane helices TM V or TM VII by the Pro215Leu and Thr289Pro missense mutation lead to severe adRP. However, more interfamilial and intrafamilial clinical data will be necessary to draw conclusions on a constant genotype-phenotype correlation in these mutations.

ACKNOWLEDGEMENTS
We are grateful to Dr Daxecker and Dr Lalehabbasi, Innsbruck/Austria for collaboration.

Authors’ affiliations
A Schuster, H Jägle, D Bosch, E Zrenner, University Eye Hospital, Department of Neuroophthalmology, Tuebingen, Germany
N Weisschuh, S Tippmann, B Wissinger, Molecular Genetics Laboratory, Tuebingen, Germany
A R Janecke, Department of Medical Genetics, and Molecular and Clinical Pharmacology, Innsbruck Medical University, Austria

<table>
<thead>
<tr>
<th>TM I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cytoplasm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOOC-ACAGVOSTETSXYSVTASA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arg314fsX16: Arg-Glu-Leu-His-Ala-His-His-Leu-Leu-Arg-Gln-Glu-Pro-Thr-Gly-STOP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 4 (A) Fundus LE (patient II:3; family 3; Pro215Leu). Nasal periphery (top) and posterior pole (bottom). (B) Fundus LE (patient III:4; family 3; Pro215Leu). Nasal periphery (top) and posterior pole (bottom).

Figure 5 Two dimensional model of rhodopsin (mutations boxed). The TM helices are labelled I-VII. Arg314fsX16 mutation: Arg-Glu-Leu-His-Ala-His-His-Leu-Leu-Arg-Gln-Glu-Pro-Thr-Gly-STOP.
REFERENCES

Novel rhodopsin mutations and genotype-phenotype correlation in patients with autosomal dominant retinitis pigmentosa

A Schuster, N Weisschuh, H Jägle, D Besch, A R Janecke, H Zierler, S Tippmann, E Zrenner and B Wissinger

Br J Ophthalmo 2005 89: 1258-1264
doi: 10.1136/bjo.2004.063933

Updated information and services can be found at:
http://bjo.bmj.com/content/89/10/1258

These include:

References
This article cites 38 articles, 18 of which you can access for free at:
http://bjo.bmj.com/content/89/10/1258#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Epidemiology (1068)
- Retina (1608)
- Eye (globe) (708)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/