Background: The authors recently identified three large genetically unrelated families with an identical 17 base pair duplication mutation in exon 4 of the PITX3 gene. Here, they report the detailed clinical phenotype.

Methods: Affected and unaffected individuals in the three families with autosomal dominant posterior polar cataract underwent full clinical examination and donated blood samples for DNA extraction and molecular genetic studies.

Results: In all three families, an identical 17 base pair duplication mutation in PITX3 was identified which co-segregated with disease status in the family. All affected individuals had bilateral progressive posterior polar cataracts. In one family, posterior polar cataract was the only clinical abnormality but in the other two families, one of 10 affected individuals and four of 11 affected individuals also had anterior segment mesenchymal dysgenesis (ASMD).

Conclusion: Mutations in the PITX3 gene in humans result in a recurrent mutation in the PITX3 gene. Here, we present a detailed description of the clinical phenotype associated with this mutation.

PATIENTS AND METHODS

The families in this study were identified from the genetic clinic database at Moorfields Eye Hospital. This provided details of the probands, from whom the pedigrees were constructed. Moorfields ethics committee approval was obtained for the studies and all individuals taking part in the study gave written informed consent.

Both affected and unaffected individuals underwent full clinical examination. This included comprehensive ophthalmic examination, with careful slit lamp examination and anterior segment photography when appropriate. Peripheral blood samples were collected from which DNA was extracted for subsequent molecular genetic analysis. The molecular genetic methodology has been described previously.

The pedigrees are shown in figure 1. All three families are of English descent and autosomal dominant inheritance is supported by the presence of affected male and female individuals in each generation and male to male transmission. The following number of individuals were examined from each family: eight affected and 11 unaffected from family A, 10 affected and nine unaffected from family B, 14 affected and 18 unaffected from family C. The age ranges of the individuals examined were: 8–70 years (family A), 8–70 (family B), 7–80 (family C). Overall, in the three families, 30 male and 42 female individuals were examined.

RESULTS

The molecular genetic studies, reported elsewhere, showed that all affected individuals in each of the three families had an identical mutation in the PITX3 gene. Sequence analysis of this gene revealed a 17 base pair duplication mutation in exon 4 which co-segregated with the disease phenotype in the families. The mutation results in a frameshift in codon 220 and leads to the production of an aberrant protein consisting of 94 additional residues. Haplotyping confirmed that the three families are unrelated.

All affected individuals from the three families had the same cataract phenotype. Posterior polar cataract was fully penetrant and exhibited some variable expressivity. The typical natural history was to develop gradually progressive bilateral posterior polar cataracts (fig 2A and B), which became clinically significant within the first decade of life.

Abbreviations: ASMD, anterior segment mesenchymal dysgenesis
and visually significant within the first two decades, necessitating cataract extraction and lens implantation.

A few individuals affected with cataract also exhibited features of ASMD. In family A, one of 10 affected individuals had ASMD (subject III:5). This subject had, in addition to cataracts, congenital glaucoma, posterior embryotoxon, atrophic irides, and microcornea. She underwent a left penetrating keratoplasty aged 28 and repeat penetrating keratoplasty aged 41 for endothelial decompensation in the previous graft (fig 2C and D). In family B, four affected individuals had ASMD. There was considerable variability in the ASMD with features ranging from superior sclerocornea to central corneal opacity with iridocorneal adhesions (fig 2E and F). The visual acuities of the individuals with cataract alone ranged from 6/5 to light perception (in the unoperated eyes) and from 6/5 to light perception (in the operated eyes).
The visual acuities of the subjects with cataract and ASMD ranged from hand movements to light perception (in the unoperated eyes) and from 6/6 to 6/60 (in the operated eyes).

DISCUSSION
We have described three genetically unrelated families with autosomal dominant progressive posterior polar cataract. They all have an identical 17 base pair (17 bp) duplication mutation in the PITX3 gene. Cataract causing mutations in PITX3 have only been previously reported in two other families. One was a large family with an identical 17 bp duplication mutation causing cortical cataracts and ASMD in all of the affected individuals. The second was a small family with total cataract in which both affected individuals developed glaucoma at a young age. In this paper, we report a large family in which all the affected individuals with the 17 bp duplication mutation have posterior polar cataract without associated ASMD. Posterior polar cataract has not previously been reported in association with mutations in PITX3. Autosomal dominant posterior polar cataract is genetically heterogeneous. Two loci on 1p36, and 20p12 and mutations in one gene, CRYAB on 11q21, have been reported in association with this phenotype. We have demonstrated that mutations in PITX3, on 10q25, can give rise to an isolated posterior polar cataract phenotype. The mechanism by which mutations in PITX3 give rise to such a localised form of lens opacity remains unknown.

Mutations in a number of genes encoding transcription factors including PITX3, PAX6, FOXE3, EYA1, and MAF have been implicated in ASMD and cataract. Most mutations are associated with ASMD and cataract in all affected individuals within the family although there is variability in the phenotype. A single family with a mutation in MAF has been reported in which some affected members of the family had both ASMD and cataract, while others had cataract alone. Another transcription factor gene, HSFB4, has been reported to cause cataract alone in all affected individuals within a large family.

PITX3 is a member of the PITX gene family and encodes a paired-like class of homeobox transcription factors. Both PITX2 and PITX3 genes are involved in eye development and are expressed in most developing ocular tissues, including the cornea, lens, and retina. Mutations in PITX2 have been reported in Rieger’s syndrome. The 17 bp duplication mutation in exon 4 of PITX3, reported here, results in a frameshift in codon 220 and leads to the production of an aberrant protein consisting of 94 additional residues. The mutation does not affect the homeodomain and the mechanism by which the aberrant protein leads to cataract and ASMD is unclear. A better understanding of the disease mechanism will be gained by future functional studies.

In two of the three families reported here, affected members showed a wide variation in phenotype. Some affected individuals had cataract alone whereas others had...
ASMD of variable severity. The anterior segment developmental abnormalities varied from peripheral sclerocornea to complex disorders with changes similar to Peter’s anomaly (central corneal opacity with iridocorneal adhesions). This variability between individuals carrying the same causative mutation may result from a number of factors including the effects of other modifier genes, intrauterine environmental factors, or stochastic developmental events.22

ACKNOWLEDGEMENTS
We thank the family members for taking part in these studies. This work is supported by the Welcome Trust, project grant number: 063969/Z/01.

SSB thanks The Special Trustees of Moorfields Eye Hospital for their general support.

Authors’ affiliations
P K F Addison, V Berry, S S Bhattacharya, A T Moore, Department of Molecular Genetics, Institute of Ophthalmology, London, UK
P K F Addison, A C W Ionides, P J Francis, A T Moore, Moorfields Eye Hospital, London, UK

Competing interests: The authors have no competing interests.

Ethical approval: Ethics committee approval was obtained from The

Correspondence to: Professor A T Moore, Moorfields Eye Hospital, 162 City Road, London EC1V 2PD, UK; tony.moore@ucl.ac.uk

Accepted for publication 26 July 2004

REFERENCES
Posterior polar cataract is the predominant consequence of a recurrent mutation in the PITX3 gene

P K F Addison, V Berry, A C W Ionides, P J Francis, S S Bhattacharya and A T Moore

doi: 10.1136/bjo.2004.053413

Updated information and services can be found at:
http://bjo.bmj.com/content/89/2/138

These include:

References
This article cites 20 articles, 11 of which you can access for free at:
http://bjo.bmj.com/content/89/2/138#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

Lens and zonules (807)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/