Effect of trabeculectomy on ocular blood flow

F Berisha, K Schmetterer, C Vass, S Dallinger, G Rainer, O Findl, B Kiss, L Schmetterer

Background/aim: Current evidence suggests that vascular insufficiencies in the optic nerve head play an important part in the pathogenesis of glaucomatous optic neuropathy. Trabeculectomy is the most common operative procedure for the treatment of medically uncontrolled glaucoma. This study was conducted to investigate whether trabeculectomy may improve ocular haemodynamics.

Methods: 30 patients with primary open angle glaucoma about to undergo trabeculectomy were included in the study. Patients were evaluated before surgery and at 2 and 10 weeks after trabeculectomy. Ocular blood flow in the optic nerve head was assessed using scanning laser Doppler flowmetry. Fundus pulsation amplitude (FPA) measurements were obtained with laser interferometry.

Results: Because of the decrease in intraocular pressure there was a significant increase in ocular perfusion pressure (OPP) following trabeculectomy (18.5% (SD 12.0%) and 19.0% (17.1%) at 2 and 10 weeks postoperatively; p < 0.001). A significant increase in OnhBF was observed after trabeculectomy (11.6% (16.4%) and 16.2% (20.2%) for each postoperative visit, respectively; p < 0.001). FPA was also significantly higher compared with baseline values (17.2% (17.3%) and 17.4% (16.3%), respectively; p = 0.001). A significant association between the increase in OPP and the increase in OnhBF and FPA was observed 10 weeks after surgery (r = 0.47; p = 0.009, and r = 0.50; p = 0.005, respectively).

Conclusion: The results of this study suggest that trabeculectomy improves ocular blood flow in patients with chronic open angle glaucoma.

Although elevated intraocular pressure (IOP) is an important risk factor in glaucoma, there is increasing evidence that ocular blood flow impairment also contributes to the progression of glaucomatous damage. Blood flow abnormalities in glaucoma have been reported using a variety of techniques (for review see Flammer et al1), but it is not yet clear whether this disturbance of blood circulation is among the causes of the disease or a result of the glaucomatous process.

Trabeculectomy is commonly performed in patients with glaucoma, in which medical therapy has failed to control IOP. However, in many cases visual field loss is not completely prevented despite a decrease in IOP. Few data are available as to whether trabeculectomy improves ocular haemodynamics. An increase in ocular blood flow in patients undergoing trabeculectomy was shown in some3 4 but not in all5 studies. The reasons for these discrepancies remain to be elucidated, but may be related to the use of different techniques, heterogeneous patient groups, small sample sizes, and the possible confounding effects of ocular hypotensive agents.

The purpose of the present study was to investigate the effect of trabeculectomy on ocular haemodynamics in patients with primary open angle glaucoma (POAG) using scanning laser Doppler flowmetry (SLDF) and laser interferometric measurement of fundus pulsation amplitude (FPA).
Methods
Non-invasive measurement of systemic haemodynamics
Systolic, diastolic, and mean arterial blood pressure (SBP, DBP, MAP) were measured on the upper arm by an automated oscillometric device. Pulse rate (PR) was automatically recorded from a finger pulse oximeter (HP-CMS patient monitor; Hewlett-Packard, Palo Alto, CA, USA). Ocular perfusion pressure (OPP) in the sitting position was calculated as 2/3 × MAP–IOP.

SLDF
The principles of SLDF (Heidelberg retina flowmeter (HRF), Heidelberg Engineering, Heidelberg, Germany) have been described in detail previously.® Briefly, vascularised tissue is illuminated by coherent laser light. Scattering by moving red blood cells (RBCs) leads to a frequency shift in the scattered light. Accordingly, the mean RBC velocity, blood volume, and blood cells (RBCs) leads to a frequency shift in the scattered light. Accordingly, the mean RBC velocity, blood volume, and blood flow can be calculated in relative units. With SLDF these parameters are calculated for each point during the scanning process resulting in a two dimensional map of retinal and optic nerve perfusion. In the present study, one 10×10 pixel area (100×100 µm) in the optic disc (OnhBF) located temporally between the outer margin of the pallor and the margin of the optic nerve head was chosen for calculation of haemodynamic parameters. The selection of the measurement areas was based on the method described by Nicolela et al.® Reproducibility is a critical issue with SLDF.® Hence, at least two recordings were taken, and the mean of the two values from the best images obtained was calculated. Only flow readings with a coefficient of variation of less than 20% were included in the analysis.

Laser interferometric measurement of fundus pulsation
Pulse synchronous pulsations of the eye fundus were assessed by laser interferometry as described previously.® Briefly, the eye is illuminated by the beam of a laser diode with a wavelength of 783 nm. The light is reflected at both the front surface of the cornea and the fundus. The two re-emitted waves produce interference fringes from which the changes in distance between cornea and retina during a cardiac cycle can be calculated. The maximum distance change is called FPA and estimates the local pulsatile choroidal blood flow (POBF®). Measurements of FPA were performed in the fovea to assess pulsatile choroidal blood flow. Again, two measurements were performed at each fundus location, and the mean of the two measurements was calculated. FPAs with a coefficient of variation of less than 20% were not included in the analysis.

Table 1 Baseline patient characteristics

<table>
<thead>
<tr>
<th>Mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
</tr>
<tr>
<td>Mean age</td>
</tr>
<tr>
<td>Male/female</td>
</tr>
<tr>
<td>SBP (mm Hg)</td>
</tr>
<tr>
<td>DBP (mm Hg)</td>
</tr>
<tr>
<td>MAP (mm Hg)</td>
</tr>
<tr>
<td>Pulse rate (min)</td>
</tr>
<tr>
<td>IOP (mm Hg)</td>
</tr>
<tr>
<td>Ocular perfusion pressure (mm Hg)</td>
</tr>
<tr>
<td>Mean deviation (dB)</td>
</tr>
<tr>
<td>C/D ratio</td>
</tr>
</tbody>
</table>

Figure 1 Changes in intraocular pressure (p <0.001) (A), optic nerve head blood flow (p <0.001) (B), and fundus pulsation amplitude (p <0.001) (C) in patients following trabeculectomy (n = 30). There was a significant increase in OnhBF at 2 weeks postoperatively (11.6% (16.4%); p <0.001), and at 10 weeks (16.2% (20.2%); p <0.001; B). At the first and second postoperative evaluations, FPAs were also significantly higher as compared to baseline values (17.2% (17.3%) and 17.4% (16.3%); p = 0.001; C).

Data analysis
All statistical analyses were performed with Statistica for Windows (StatSoft, version 6.0). Statistical comparisons of the preoperative and postoperative parameters were made with repeated measures ANOVA. Linear correlation analysis was performed to assess the association between percentage changes in ocular haemodynamic parameters and percentage changes in IOP and OPP. Data are presented as means (SD). A two tailed p <0.05 was considered the level of significance.

RESULTS
According to the reproducibility criteria for SLDF and laser interferometry the results of 30 patients were considered for analysis only. MAP was 99.1 (13.5) mm Hg preoperatively, 100.0 (13.9) mm Hg at the first visit postoperatively, and 99.3 (12.2) mm Hg at the second visit. Mean PRs (beats/min) were 75.1 (10.4), 81.3 (10.5), and 79.2 (10.8) at baseline, and 2 and 10 weeks after surgery. A significant increase (p <0.05)
in PR was observed at both postoperative visits, whereas MAP remained unchanged during the study period.

Following trabeculectomy there was a highly significant reduction in IOP. At 2 and 10 weeks after surgery the mean IOP reductions were 6.8 (28.5) mm Hg (4.5%) and 6.8 (28.9) mm Hg (4.6%), respectively (p <0.001; fig1A). Because of the decrease in IOP there was a significant increase in OPP (18.5% (12.0%) and 19.0% (17.1%) for each postoperative visit, respectively; p <0.001).

There was no significant correlation between percentage changes in OPP and percentage changes in OnhBF and percentage changes in FPA and percentage changes in IOP (r = 0.23 and r = -0.20, respectively). Increasing OPP was associated with an increase in OnhBF and FPA. This effect tended to be significant at 2 weeks (percentage changes in OPP versus percentage changes in OnhBF: r = 0.28; p = 0.128, and percentage changes in OPP versus percentage changes in FPA: r = 0.33; p = 0.07), and reached the level of significance at 10 weeks after surgery (r = 0.47; p = 0.009, and r = 0.50, p = 0.005; respectively) (fig 2). Neither OnhBF measurements nor FPA measurements were dependent on antiglaucoma therapy (p = 0.583, and p = 0.394, respectively).

DISCUSSION

In the present study ocular haemodynamics in patients with POAG were investigated before and after trabeculectomy. A significant increase in OnhBF and FPA in the macula, indicating increased pulsatile ocular blood flow, was observed postoperatively.

Previous results concerning the effect of trabeculectomy on ocular perfusion are contradictory. Our results are comparable to those reported by Trible and colleagues, who found that trabeculectomy resulted in significant increase in blood velocities in retrobulbar vessels. A study by James found an increase of POBF following trabeculectomy, which was attributed to an increase in OPP. An increase in POBF was also reported in a retrospective study in 23 patients with normal pressure glaucoma following trabeculectomy. Our results are contrary to the findings of Cantor, who reported that surgical IOP reduction does not alter OnhBF assessed with SLDF or flow velocities in retrobulbar vessels in glaucoma patients. In contrast with the present study, however, a washout period for topical antiglaucoma medication was scheduled before surgery. Another study reporting a lack of ocular haemodynamic changes after trabeculectomy was performed with the laser speckle technique.

When comparing the results of these studies several differences between the study designs and the methodology used need to be taken into account. On the one hand the inclusion/exclusion criteria may determine to which degree autoregulation is altered in glaucoma patients. Evidence of decreased autoregulatory capacity in glaucoma patients has been provided by several investigators (for review see Flammer et al), but little is known about the potential loss of autoregulation with progression of the disease. In the present study there was a correlation between the increase in OPP and the increase in ocular haemodynamic variables 10 weeks after surgery indicating that at least part of the ocular blood flow response is due to the decrease in IOP.

Another factor, which could contribute to the increase in ocular blood flow parameters after trabeculectomy in the present study, is that patients did not have a washout period for antiglaucoma medication. Only one previous study reported effects of trabeculectomy on ocular blood flow after withdrawal of antiglaucoma medication before surgery and the results were negative. Accordingly, one may speculate that in the present study cessation of topical antiglaucoma therapy may have contributed to the observed increase in ocular blood flow parameters. On the other hand the results obtained were independent of the antiglaucoma therapy and previous reports on ocular haemodynamic effects of antiglaucoma drugs are largely contradictory.

In conclusion, the results of our study suggest that trabeculectomy not only lowers IOP, but also improves ocular blood flow in patients with chronic POAG.

Authors’ affiliations

F Berisha, S Dallinger, B Kiss, L Schmetterer, Department of Clinical Pharmacology, Medical University of Vienna, Austria

K Schmetterer, C Vass, G Rainer, O Feniak-Bis, Department of Ophthalmology, Medical University of Vienna, Austria

L Schmetterer, Department of Biomedical Engineering and Physics, Medical University of Vienna, Austria

REFERENCES

Video reports

To view the video reports in full visit our website www.bjophthalmol.com and click on the link to the video reports.

- Limbal-sparing lamellar keratoplasty. S L Watson, S Rauz, J Dart
- Bilateral Abducens Neuromyotonia. L H Ospina, N Aui-aree, D P Anderson
- Light to dark physiological variation in irido-trabecular angle width. G M Gazzard, P J Foster, D S Friedman, P T Khaw, S K L Seah

Video Suite: Triamcinolone-assisted vitrectomy

- Triamcinolone-assisted removal of the posterior hyaloid to repair retinal detachment due to macular hole in high myopia. A Ueno, H Enaida, Y Hata, T Nakamura, T Hisatomi, K Fujisawa, T Kubota, T Sakamoto, T Ishibashi
- Triamcinolone acetonide-assisted Epiretinal Membrane Peeling. S D M Chen, C K Patel
- A suture technique to manage a case of severe early flap displacement after laser in situ keratomileusis. L Spadea, P Pantaleoni, G Bianco

Reconstruction of the Ocular Surface in LOGIC Syndrome. E Moore, V Kumar, J R Ainsworth, S Shah

- Laser Photocoagulation for Posterior Segment Intraocular Parasites. T Prabriputaloong, S Asawaphureekorn

- Feeder Vessel Treatment with High Speed ICG Angiography. D Stanescu-Segall, G Coscas, F Coscas, G Soubrane

- Endoscopy to aid anterior segment surgery. J E Moore, A Sharm

- Penetrating ocular injury due to a fish hook: Surgical removal. S D M Chen, D Chiu, C K Patel

- Retinal Ganglion Cell Axon Response to Guidance Molecules. S F Oster and DW Sretavan

- Marin-Amat Syndrome. A Jagiya, C Sandy

- Excision of subcutaneous Dirofilariaiisis of the eyelid. D Mallick, T P Ittyerah

- Thixotropy: a novel explanation for the cause of lagophthalmos after peripheral facial nerve palsy. M Aramideh, J H T M Koelman, P P Devriese, F VanderWerf, JD Speelman

- Surgical revision of leaking filtering blebs with an autologous conjunctival graft. K Taherian, A Azuara-Blanco

- Dipetalonema Reconditum in the human eye. T Huynh, J Thean, R Maini
Effect of trabeculectomy on ocular blood flow

F Berisha, K Schmetterer, C Vass, S Dallinger, G Rainer, O Findl, B Kiss and L Schmetterer

Br J Ophthalmol 2005 89: 185-188
doi: 10.1136/bjo.2004.048173

Updated information and services can be found at:
http://bjo.bmj.com/content/89/2/185

These include:

References
This article cites 11 articles, 2 of which you can access for free at:
http://bjo.bmj.com/content/89/2/185#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
Angle (1006)
Glaucoma (988)
Intraocular pressure (1002)
Ophthalmologic surgical procedures (1223)
Neurology (1355)
Optic nerve (713)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/