Impact of lesion size on photodynamic therapy with verteporfin of predominantly classic lesions in age related macular degeneration

L Arias, O Pujol, J Berniell, M Rubio, G Roca, L Castillo, E Acebes

Aim: To determine if photodynamic therapy (PDT) outcomes are related to lesion size in patients with subfoveal predominantly classic choroidal neovascularisation (CNV) secondary to age related macular degeneration (AMD).

Methods: According to greatest linear dimension (GLD) of the entire lesion determined with fluorescein angiography (FA) patients were divided into two groups. In the first group GLD was <3000 μm and in the second one GLD was 3000–5000 μm. All eyes were treated with standard PDT with the verteporfin protocol. The primary outcome was the proportion of eyes in both groups that did not show significant leakage in FA at the end of follow up. Secondary outcomes were changes in GLD and in best corrected visual acuity (BCVA).

Results: 64 patients (mean (SD) age, 76.7 (7.7) years; range 58–95 years) were recruited to participate in the study. All participants in the study completed the follow up time (mean 1.6 months). 24 patients (75%) in the group of smaller lesions (n = 32) compared with 15 patients (46.8%) in the group of larger lesions (n = 32) did not show significant leakage in FA at the end of follow up (p = 0.02). A GLD increase >1000 μm was recorded in nine eyes (28.1%) in the group of smaller lesions and in 16 eyes (50%) in the group of larger lesions (p = 0.07). 22 eyes (68.7%) in the group of smaller lesions compared with 19 eyes (59.3%) in the group of larger lesions lost less than three lines of vision (p = 0.06). Relevant side effects related to verteporfin therapy were not recorded, except for four patients (6.2%) with infusion related back pain.

Conclusions: These results suggest that lesion size at baseline may be a prognosis factor in PDT in patients with subfoveal predominantly classic CNV secondary to AMD. There are no relevant side effects or safety concerns derived from verteporfin therapy.

PATIENTS AND METHODS

We conducted this prospective study at Bellvitge University Hospital, a referral centre for PDT in Catalonia (Spain) with a six million population. Patients were enrolled between January 2001 and September 2001. Informed consent was received from each subject before participation in our study. Each subject underwent a complete ophthalmic examination, including visual acuity testing with ETDRS charts, intraocular pressure measurement, slit lamp biomicroscopy, indirect ophthalmoscopy, and fluorescein angiography (FA).

To be eligible for the study patients must have met the following criteria: (1) 50 years of age or older, (2) neovascular AMD, (3) CNV under the geometric centre of the fovea (subfoveal), (4) area of classic CNV occupying at least 50% of the area of the entire lesion (predominantly classic), (5) greatest linear dimension (GLD) of the lesion ≤5000 μm, (6) Snellen visual acuity equivalent of 20/40 to 20/800 at baseline. Neovascular AMD was diagnosed by clinical examination and then further categorised by FA.

Patients were excluded if they had any condition other than AMD to account for CNV (such as pathologic myopia). Patients could not have been treated for CNV before being recruited for our study. Patients with severe liver disease or porphyria or hypersensitivity to porphyrins were excluded.

Abbreviations: AMD, age related macular degeneration; BCVA, best corrected visual acuity; CNV, choroidal neovascularisation; FA, fluorescein angiography; GLD, greatest linear dimension; PDT, photodynamic therapy
They were divided into two groups of 32 patients each according to GLD of the entire lesion. In the first group GLD was <3000 μm and in the second one GLD was 3000–5000 μm. The GLD was determined in all cases by the same investigator from a digital fluorescein angiogram obtained with Imagent (Topcon TRC-50XT; Topcon Corporation, Tokyo, Japan). The GLD was measured including all lesion components. This term refers to CNV (classic, occult, or both) and features that could obscure the boundaries of CNV (thick blood, hypofluorescence not corresponding to blood, serous detachment of the RPE, hyperfluorescent staining from fibrous tissue). The GLD was determined with the early to mid-phase angiograms, as these images are typically the most useful frames for measuring the classic lesions. The FA used to calculate the GLD was obtained within 1 week before PDT.

All patients received PDT with verteporfin following the standard protocol of treatment.1 Verteporfin (6 mg/m² body surface area) was administered via intravenous infusion of 30 ml over 10 minutes. Fifteen minutes after the start of the infusion, a diode laser light at 689 nm (Zeiss Jena GmbH, Jena, Germany) delivered 50 J/cm² at an intensity of 30 ml over 10 minutes. Fifteen minutes after the start of the treatment, patients were instructed to avoid direct sunlight or bright indoor light for 48 hours after treatment.

Three months (SD 2 weeks) after the initial treatment patients were scheduled for a new ophthalmological examination, including an FA. If significant leakage from CNV was observed, the patient had further verteporfin treatment. Any change in GLD was documented.

This sequence was followed during the planned follow up time (18 months).

The primary outcome was the proportion of eyes in both groups that did not show significant leakage in FA at the end of follow up. No significant leakage was interpreted as complete absence of leakage from CNV or as minimal leakage (<50% of the area treated previously).1 Secondary outcomes were changes in GLD and in best corrected visual acuity (BCVA).

Statistical methods
Statistical analysis for descriptive statistics was performed using SPSS statistical software. Categorical analysis was performed using the χ² test. Normally distributed continuous variables were compared with the independent samples t test, as appropriate. A p value less than 0.05 was considered to be significant.

RESULTS
Sixty-four patients (mean (SD) age 76.7 (7.7) years; range 58–95 years), 28 women (43.7%) and 36 men (56.2%), were recruited to participate in the study. Patients were enrolled consecutively between January 2001 and September 2001. We decided to recruit at least 60 patients for statistical purposes, with the same number of patients in each group. The enrolment in the group of smaller lesions finished 1 month earlier than in the other group. Forty-nine patients (76.5%) were phakic and 15 patients (23.4%) were pseudo-phakic. In 27 cases (42.1%) the right eye was the affected one and in 37 cases (57.8%) it was the left eye. No patient with bilateral involvement was enrolled. Twenty-six patients (40.6%) had a disciform scar in the fellow eye.

All participants in the study completed the follow up time (mean 16.6 months). By the last examination, but before any re-treatment at that visit, patients received an average of 3.0 treatments in the group of smaller lesions (<3000 μm). The average of treatments in the group of larger lesions (3000–5000 μm) was 3.4 per participant.

We did not record relevant side effects related to verteporfin therapy, except for four patients (6.2%) with infusion related back pain.

Fluorescein angiographic outcomes
At the end of follow up, 24 eyes (75%) in the group of smaller lesions compared with 15 eyes (46.8%) in the group of larger lesions did not show significant leakage in FA (p = 0.02) (fig 1). Therefore, these patients did not need to receive another verteporfin treatment at that time, although they were scheduled for a new examination outside the present study.

Changes in GLD are summarised in table 1. Mean GLD in the group of smaller lesions went from 2281.2 µm at baseline to 5012.5 µm at month 18 (mean increase of +2731.3 µm). Mean GLD in the group of larger lesions went from 2953.1 µm at baseline to 5301.0 µm at month 18 (mean increase of +2347.9 µm). A GLD increase >1000 µm was recorded in nine eyes (28.1%) in the group of smaller lesions and in 16 eyes (50%) in the group of larger lesions (p = 0.07). Nevertheless, it must be noted that an increase of this order is more relevant in a small lesion than in a larger one.

Vision outcomes
Visual acuity categories in study eyes are summarised in table 2. At the end of follow up, 22 eyes (68.7%) in the group of smaller lesions compared with 19 eyes (59.3%) in the group of larger lesions lost less than three lines of vision.

Table 1 Main data related to greatest linear dimension (GLD) observed during the study

<table>
<thead>
<tr>
<th>GLD at baseline</th>
<th>Final GLD</th>
</tr>
</thead>
<tbody>
<tr>
<td><3000 μm</td>
<td>3000–5000 μm</td>
</tr>
<tr>
<td>Mean</td>
<td>2281.2</td>
</tr>
<tr>
<td>SD</td>
<td>457.5</td>
</tr>
<tr>
<td>Range</td>
<td>1400–3000</td>
</tr>
</tbody>
</table>
It is known that one of the most important findings of the TAP investigation was a differential benefit of verteporfin treatment depending on the amount of classic and occult CNV present in the lesion at baseline. In the subgroup analysis, predominantly classic lesions (classic CNV ≥50% of the entire lesion) were found to have greater treatment benefit than other types of lesion for all primary and secondary outcomes at both the 12 and 24 month follow up. In the TAP investigation 242 patients were included with predominantly classic CNV, 159 patients receiving verteporfin, and 83 patients receiving placebo. Our study included 64 patients, all of them treated with verteporfin.

The main outcome to evaluate was the proportion of eyes in both groups that did not show significant leakage in FA at the end of follow up. No significant leakage was interpreted as complete absence of leakage from CNV or as minimal leakage (<50% of the area treated previously). The results yield statistically significant differences between both groups of patients in favour of the group of smaller lesions (75% versus 46.8%; p = 0.02). Nevertheless, it should be considered that in a larger lesion there is presumably more neovascular tissue and therefore this could impact on the amount of leakage observed. In the TAP investigation, 37% of patients with predominantly classic lesions receiving verteporfin showed complete absence of leakage from classic CNV at month 18. In our study we considered the proportion of eyes with complete absence of leakage and minimal leakage to indicate the patients who did not need to receive further verteporfin treatment at that time.

Changes in visual acuity in our study were quite similar to those observed in the TAP investigation.

In the TAP investigation, 67% of patients with predominantly classic lesions receiving verteporfin at month 12, and 59% at month 24, lost less than 15 letters (three lines). In our study, 69% of patients in the group of smaller lesions compared with 59% in the group of larger lesions lost less than 15 letters at month 18. Nevertheless, it must be noted that the proportional growth of the lesions was much the same whether they were small or large and this observation was not significantly different. However, an enlargement of the lesion should not be interpreted as a failure of the treatment.

Vision outcomes in our study are quite similar to those observed in the TAP investigation.

In the TAP investigation, 67% of patients with predominantly classic lesions receiving verteporfin at month 12, and 59% at month 24, lost less than 15 letters (three lines). In our study, 69% of patients in the group of smaller lesions compared with 59% in the group of larger lesions lost less than 15 letters at month 18. Nevertheless, it must be noted that 44% of patients in each one of our groups presented visual acuity levels less than 20/200 at baseline. On the other hand, in the TAP investigation these patients would not have been recruited. The initial visual acuity was slightly lower in the group of larger lesions (table 2). This should be considered when interpreting the results.

The average of treatments in the group of smaller lesions (3.0) and in the group of larger lesions (3.4) at month 18 is lower than that observed in the TAP investigation (5.6 at month 24). There is evidence among clinicians that the rate
of re-treatments in general practice is lower than that observed in PDT clinical trials.

In our study there were no relevant side effects or safety concerns derived from verteporfin therapy. It is known that the overall safety profile of verteporfin therapy is very good.7

We only observed four patients (6.2%) with infusion related back pain which did not affect the viability of the treatment. In the literature, some different approaches have been proposed to prevent this complication.8 9

This study has some limitations, and the recognition of these should help refine future research efforts. There was a limited number of patients enrolled at a single centre and there were no controls. The physicians were not blinded during examination of the patients or angiograms. The findings cannot be extrapolated to those obtained in the TAP investigation as some inclusion criteria and primary and secondary outcomes were different and lesion size was obtained in digital systems.

Despite the above limitations, the research findings demonstrate that small predominantly classic lesions in AMD patients respond better to verteporfin therapy than larger lesions.

The recognition of prognostic factors is important so that patients who may benefit from verteporfin therapy can be identified and treated adequately.10 11 In addition, it will valuable to improve clinical effectiveness and cost utility of photodynamic therapy.12 13

Authors’ affiliations
L Arias, O Pujol, J Berniel, M Rubio, G Roca, L Castillo, E Acebes, Department of Ophthalmology, Bellvitge University Hospital, L’Hospitalet de Llobregat, Barcelona, Spain

The authors have no financial or proprietary interest in any product mentioned in this article.

This paper was presented during the American Academy of Ophthalmology Annual Meeting held in Anaheim (California) in November 2003.

REFERENCES

www.bjophthalmol.com
Impact of lesion size on photodynamic therapy with verteporfin of predominantly classic lesions in age related macular degeneration

L Arias, O Pujol, J Berniell, M Rubio, G Roca, L Castillo and E Acebes

Br J Ophthalmol 2005 89: 312-315
doi: 10.1136/bjo.2004.050997

Updated information and services can be found at:
http://bjo.bmj.com/content/89/3/312

These include:

References
This article cites 13 articles, 1 of which you can access for free at:
http://bjo.bmj.com/content/89/3/312#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
- Retina (1608)
- Choroid (565)
- Neurology (1355)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/