The characterisation of hyalocytes: the origin, phenotype, and turnover

H Qiao, T Hisatomi, K-H Sonoda, S Kura, Y Sassa, S Kinoshita, T Nakamura, T Sakamoto, T Ishibashi

Aim: To determine the characterisation of hyalocytes: the origin, phenotype, and turnover in the rodent.

Methods: To characterise the ultrastructure and distribution of hyalocytes, transmission and scanning electron microscopy was performed in rat eyes. Immunophenotypical analysis was performed by either anti-ED1 or ED2 antibodies. To examine the origin of the hyalocytes, the chimeric mice were created and were used to transplant the bone marrow (BM) cells from enhanced green fluorescent protein (EGFP) transgenic mice. The turnover of hyalocytes was examined at 0, 4, 6, 7, and 12 months after BM transplantation.

Results: Hyalocytes were distributed especially in the vitreous cortex and had an irregular shape with a spherical granule. Immunophenotypical studies demonstrated that most of the hyalocytes in rat eyes expressed ED2 but not ED1. In the chimeric mice, the hyalocytes were GFP negative right after BM transplantation. Interestingly, more than 60% of hyalocytes were replaced within 4 months and approximately 90% within 7 months after BM transplantation.

Conclusions: The rodent hyalocytes were shown to express tissue macrophage marker, were derived from BM, and totally replaced within 7 months. These data provide the characterisation of hyalocytes in physiological conditions, especially their origin, distribution, and turnover, and may contribute to the better understanding of the pathogenesis of vitreoretinal disease.

MATERIALS AND METHODS

Experimental animals

WT C57BL/6 female mice and Brown Norway rats (postnatal 8 weeks) were obtained from SLC Japan (Shizuoka, Japan). EGFP transgenic female mice (B6 background) were kindly provided by Dr Masaru Okabe (Osaka University, Japan). All animals were treated humanely and were housed in specific pathogen free conditions at Kyushu University.

Transmission electron microscopy (TEM)

The rats were anaesthetised with an intraperitoneal injection of pentobarbital and their eyes were enucleated and the posterior segments fixed in 1% glutaraldehyde and 1% paraformaldehyde in sterile phosphate buffered saline (PBS). They were then post-fixed in veronal acetate buffer osmium tetroxide (2%), dehydrated in ethanol and water, and embedded in Epon. Ultrathin sections were cut from blocks and mounted on copper grids.

Scanning electron microscopy (SEM)

The removed eye posterior segments were fixed as described in TEM. After dehydration, the retinas were saturated in t-butyl alcohol, and critical point drying was performed (Eiko, Tokyo). The tissue was then placed on stubs by means of self adhesive carbon tabs and sputtered with gold of 20 nm thickness.

Abbreviations: BM, bone marrow; EGFP, enhanced green fluorescent protein; FACS, flow cytometry analysis; GFAP, glial fibrillary acidic protein; ILM, inner limiting membrane; PBS, phosphate buffered saline; PI, propidium iodide; SEM, scanning electron microscopy; TEM, transmission electron microscopy
thickness by argon plasma coater (Eiko). Next, the retina was studied using a Jem 840 scanning electron microscope (Jeol).

Immunohistochemistry

For immunohistochemical examinations, the rat eyes were enucleated and fixed in 4% paraformaldehyde, embedded in paraffin. Anti-ED1, ED2 antibodies (Serotec, Oxford, UK), and control IgG were used at a 1:100 dilution. Anti-ED1 antibody recognises monocyte macrophage, and anti-ED2 recognises tissue macrophages in rat. Propidium iodide (PI) was used for nuclear staining. Cy5 labelled secondary antibody (Zymed Laboratories, San Francisco, CA, USA) was used at a dilution of 1:200 for 20 minutes, and then observed by fluorescence microscopy (Olympus, Tokyo).

Preparation of cell suspensions and chimeric mice

To characterise the infiltrating hyalocytes, we produced chimeric GFP mice, by a previously described method. Briefly, the WT B6 mice were lethally irradiated with x ray of 9 Gy; these eyes were protected with lead shields to prevent radiation retinopathy. Then they were intravenously injected via a caudal vein with 0.2 ml of PBS containing EGFP transgenic mice BM cells (6×10⁶–1×10⁷). Successful BM transplantation was confirmed by the identification of GFP⁺ cells in the blood 2 weeks after irradiation and then used for experiments.

In vivo cellular tracking using fluorescence microscopy

To directly observe the donor derived GFP⁺ cells, the peripheral blood cells in chimeric mice were obtained and suspended in 2 µg/ml PI for identification of the nuclei in cells, they were then observed by fluorescence microscopy (Olympus, Tokyo). The eyes from WT mice were used as control eyes.

Flow cytometry analysis (FACS)

The spleen cells of the chimeric mice were obtained and determined by flow cytometry using EPICS XL (Becman Coulter, Mannheim, Germany). GFP fluorescence was measured at the same excitation/emission wavelength as FITC.

Histological analysis

The chimeric mice were sacrificed at 0, 4, 6, 7, and 12 months after BM transplantation. The eyes were enucleated, further fixed in 2% paraformaldehyde for 3–4 hours and dehydrated in acetone for 5 minutes at 4°C, embedded in Technovit 8100 (Heraeus Kulzer, Werheim, Germany) on crushed ice and cut to 3 µm thick serial sections. The samples were observed by fluorescence microscopy (Olympus, Tokyo).

Statistical analysis

The number of cells per 1 mm area in 10 histological sections for each eye was measured and six eyes were analysed using analysis software (MacScope, Mitani, Fukui, Japan). The results were expressed as the means (SD). Student’s t-test was used to calculate the probability by comparing data between the groups and p<0.05 was considered to be significant.

RESULT

Hyalocytes

Hyalocytes were examined in rat vitreous cavity by TEM and SEM. Ultrastructural characterisation of the rat hyalocytes was performed using the electron microscope (fig 1).

Figure 1 The morphological characteristics and the distribution of hyalocytes. TEM micrograph of a hyalocyte was distributed in the vitreous cavity close to the retina (A). Higher magnification showed the hyalocyte was completely free and close to the inner limiting membrane (ILM) of the retina (B). SEM micrograph showed three of the free hyalocytes were distributed randomly in the vitreous cortex very close to the retina, which lies in the background (C). A higher magnification view showed the cell was entangled in a collagen fibril network in the vitreous cortex and a few protuberances are observed at the cell surface (D). (Original magnification A, ×2600, bar 5 µm; B, ×6000, bar 1 µm; C, ×1100, bar 10 µm; D, ×4300, bar = 1 µm).

Figure 2 Immunophenotypic analysis of hyalocytes characterisation. The normal adult rat hyalocytes were double immunostained with ED1 and PI, ED2 and PI, respectively at 6 months post-transplantation. ED1 antibody, bearing the characteristic phenotype of monocyte derived macrophages, did not react with hyalocytes (PI⁺, ED1⁻) (A, arrowhead). The ED2 expression was typically associated with hyalocytes (PI⁺, ED2⁺) (B, arrowhead). (Original magnification ×400).

www.bjophthalmol.com
The characterisation of hyalocytes

The characterisation of hyalocytes
We also indicated that BM derived GFP$^+$ cells (GFP$^+$/PI$^-$) occurred and turned over the residual host hyalocytes in the vitreous cavity with time. The kinetics of both resident and infiltrating macrophages have been thoroughly investigated in brain by GFP chimeric models. The turnover of resident macrophages, however, was not revealed adequately. Several studies revealed that the BM derived cells infiltrated into the central nerve system (CNS) across the blood-brain barrier in normal condition. Although infiltrating/GFP$^+$ macrophages were physiologically (without any injury or inflammation) detected in the brain of the chimeric mouse, the proportion of GFP$^+$ macrophages was small. Even under the pathological conditions including demyelation and ischemic injury, resident/GFP$^-$ macrophages were dominant compared with GFP$^+$ macrophages for up to 4 weeks. In contrast, we revealed that 90% of resident macrophages in vitreous cavity were physiologically replaced by BM derived macrophages for up to 7 months. Our data suggested that levels of resident macrophages might not been maintained by their proliferation but by being produced by BM in physiological situations. This discrepancy between brains and eyes remains unclear. The observation period might be one of the reasons for the discrepancy between replacement rates of tissue macrophages (CNS and retinas). In these studies, many GFP$^+$ cells existed around blood vessels in the CNS. Hyalocytes examined in this study exist directly on the ILM near the vascular rich region. The location might be another possible reason of this discrepancy. Further studies should be done to check whether tissue specific mechanisms, which make circulating macrophages infiltrate and reside in the tissue, exist.

Chimeric mice stably reconstituted with BM cells represent a good model for analysis of the mechanism of BM cell infiltration in the eye. However, in preparing chimeric mice, irradiation of the recipient mice is necessary to kill their own BM before transplantation; this might induce an inflammatory response. This irradiation causes gliosis by activation of astrocytes and microglia in the brain. We used a lead cup to prevent the eyes being damaged; we did not detect any histological changes such as gliosis and acute inflammatory responses in all retinas examined.

Although our data cannot definitively conclude a role for hyalocytes in the vitreous cavity, the inhibitory effects of vitreous hyalocytes on endothelial cell and RPE proliferation have been recently demonstrated. Further investigations are needed to delineate the functional characterisation of hyalocytes. Increased knowledge of the origin and character of hyalocytes should improve our understanding of various vitreoretinal pathologies, such as epiretinal membrane formation, proliferative vitreoretinopathy, and diabetic retinopathy, and lead to improved methods of prevention; furthermore, this will be also an important step towards optimising regenerative therapies.

REFERENCES

20 Haddad A, Andre JC. Hyalocyte-like cells are more numerous in the posterior chamber than they are in the vitreous of the rabbit eye. Exp Eye Res 1998;66:709–18.
The characterisation of hyalocytes: the origin, phenotype, and turnover

H Qiao, T Hisatomi, K-H Sonoda, S Kura, Y Sassa, S Kinoshita, T Nakamura, T Sakamoto and T Ishibashi

Br J Ophthalmol 2005 89: 513-517
doi: 10.1136/bjo.2004.050658

Updated information and services can be found at:
http://bjo.bmj.com/content/89/4/513

These include:

References
This article cites 20 articles, 3 of which you can access for free at:
http://bjo.bmj.com/content/89/4/513#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/